Research on multimodal data analysis such as annotated image analysis is becoming more important than ever due to the increase in the amount of data. One of the approaches to this problem is multimodal topic models as an extension of Latent Dirichlet allocation (LDA). Symmetric correspondence topic models (SymCorrLDA) are state-of-the-art multimodal topic models that can appropriately model multimodal data considering intermodal dependencies. Incidentally, hierarchically structured categories can help users find relevant data from a large amount of data collection. Hierarchical topic models such as Hierarchical latent Dirichlet allocation (hLDA) can discover a tree-structured hierarchy of latent topics from a given unimodal data collection; however, no hierarchical topic models can appropriately handle multimodal data considering intermodal mutual dependencies. In this paper, we propose h-SymCorrLDA to discover latent topic hierarchies from multimodal data by combining the ideas of the two previously mentioned models: multimodal topic models and hierarchical topic models. We demonstrate the effectiveness of our model compared with several baseline models through experiments with three datasets of annotated images.
Research on multimodal data analysis such as annotated image analysis is becoming more important than ever due to the increase in the amount of data. One of the approaches to this problem is multimodal topic models as an extension of latent Dirichlet allocation (LDA). Symmetric correspondence topic models (SymCorrLDA) are stateof-the-art multimodal topic models that can appropriately model multimodal data considering inter-modal dependencies. Incidentally, hierarchically structured categories can help users find relevant data from a large amount of data collection. Hierarchical topic models such as hierarchical latent Dirichlet allocation (hLDA) can discover a treestructured hierarchy of latent topics from a given unimodal data collection; however, no hierarchical topic models can appropriately handle multimodal data considering intermodal mutual dependencies. In this paper, we propose hSymCorrLDA to discover latent topic hierarchies from multimodal data by combining the ideas of the two previously mentioned models: multimodal topic models and hierarchical topic models. We demonstrate the effectiveness of our model compared with several baseline models through experiments with two datasets of annotated images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.