We report here that in chronic lymphocytic leukemia (CLL), the propensity to generate clonal B cells has been acquired already at the hematopoietic stem cell (HSC) stage. HSCs purified from patients with CLL displayed lymphoid-lineage gene priming and produced a high number of polyclonal B cell progenitors. Strikingly, their maturation into B cells was restricted always to mono- or oligo-clones with CLL-like phenotype in xenogeneic recipients. These B cell clones were independent of the original CLL clones because they had their own immunoglobulin VDJ genes. Furthermore, they used preferentially VH genes frequently used in human CLL, presumably reflecting the role of B cell receptor signaling in clonal selection. These data suggest that HSCs can be involved in leukemogenesis even in mature lymphoid tumors.
To identify novel targets for acute myeloid leukemia (AML) therapy, we performed genome-wide CRISPR-Cas9 screening using AML cell lines, followed by a second screen in vivo. Here, we show that the mRNA decapping enzyme scavenger (DCPS) gene is essential for AML cell survival. The DCPS enzyme interacted with components of pre-mRNA metabolic pathways, including spliceosomes, as revealed by mass spectrometry. RG3039, a DCPS inhibitor originally developed to treat spinal muscular atrophy, exhibited anti-leukemic activity via inducing pre-mRNA mis-splicing. Humans harboring germline biallelic DCPS loss-of-function mutations do not exhibit aberrant hematologic phenotypes, indicating that DCPS is dispensable for human hematopoiesis. Our findings shed light on a pre-mRNA metabolic pathway and identify DCPS as a target for AML therapy.
Key Points• NOD-specific Sirpa polymorphism is the genetic determinant of highly efficient xenograft activity in NOD-based immunodeficient mouse models.Current mouse lines efficient for human cell xenotransplantation are backcrossed into NOD mice to introduce its multiple immunodeficient phenotypes. Our positional genetic study has located the NOD-specific polymorphic Sirpa as a molecule responsible for its high xenograft efficiency: it recognizes human CD47 and the resultant signaling may cause NOD macrophages not to engulf human grafts. In the present study, we established C57BL/6.Rag2 nullIl2rgnull mice harboring NOD-Sirpa (BRGS). BRGS mice engrafted human hematopoiesis with an efficiency that was equal to or even better than that of the NOD.Rag1 nullIl2rgnull strain, one of the best xenograft models. Consequently, BRGS mice are free from other NOD-related abnormalities; for example, they have normalized C5 function that enables the evaluation of complement-dependent cytotoxicity of antibodies against human grafts in the humanized mouse model. Our data show that efficient human cell engraftment found in NOD-based models is mounted solely by their polymorphic Sirpa. The simplified BRGS line should be very useful in future studies of human stem cell biology. (Blood. 2013;121(8):1316-1325) IntroductionImmunodeficient mice are widely used to reconstitute human hematopoiesis by xenotransplantation of hematopoietic stem cells (HSCs). 1,2 This "humanized" mouse model provides a powerful tool with which to evaluate the biologic properties of human HSCs and progenitors in vivo. 3,4 Such xenotransplantation systems have also been used to study human cancer stem cells. [5][6][7][8] Elimination of the lymphoid system is the first step to achieving reconstitution of human hematopoiesis. To deplete T and B cells, the scid mutation in the Prkdc gene [9][10][11] or disruption of the recombination activating gene 1 or 2 (Rag1 and Rag2) 12,13 has been introduced into various mouse strains. In addition, to deplete natural killer (NK) cells or their functions, the IL-2 receptor common ␥ chain subunit (Il2rg) [14][15][16] or beta-2-microglobulin (B2m) [17][18][19] is disrupted.However, depletion of lymphoid cells is not sufficient and it has been shown empirically that additional strain-specific factors modulate human hematopoietic engraftment in the xenotransplantation setting. For example, within the SCID strain, the SCID with the NOD background was the gold standard for the xenotransplantation assay based on its high efficiency. 11 In fact, recent studies have shown that among the lymphoid-depleted mouse strains, the NOD-scid Il2rg null (NSG/NOG) 14,15 and NOD.Rag1 null Il2rg null (NOD-RG) 20 strains are the most efficient; the BALB/c.Rag2 null Il2rg null (BALB-RG) strain is the next efficient 21,22 ; and the C57BL/6 strains with scid, 23 Rag2 null , Rag2 null B2m null , Rag2 null Prf null , 24 or Rag2 null Jak3 null25 mutations are unable to reconstitute human hematopoiesis. The NOD strain has multiple immune deficiencies, ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.