Mechanical stress is involved in the onset of sports‐related enthesopathy. Although the amount of exercise undertaken is a recognized problem during disease onset, changes in muscle contraction type are also involved in the increase in mechanical stress during exercise. This study aimed to clarify the effects of increased mechanical stress associated with muscle contraction type and amount of exercise on enthesis. Twenty mice underwent treadmill exercise, and the muscle contraction type and overall load during exercise were adjusted by varying the angle and speed conditions. Histological analysis was used to the cross‐sectional area of the muscle; area of the enthesis fibrocartilage (FC), and expression of inflammation‐, degeneration‐, and calcification‐related factors in the FC area. In addition, the volume and structure of the bone and FC area were examined using microcomputer imaging. Molecular biological analysis was conducted to compare relative expression levels of inflammation and cytokine‐related factors in tendons. The Overuse group, which increased the amount of exercise, showed no significant differences in parameters compared to the sedentary mice (Control group). The mice subjected to slow‐speed downhill running (Misuse group) showed pathological changes compared to the Control and Overuse groups, despite the small amount of exercise. Thus, the enthesis FC area may be altered by local mechanical stress that would be increased by eccentric muscle contraction rather than by mechanical stress that increases with the overall amount of exercise. Clinical Significance: The muscle contraction type might be more involved in the onset of sports‐related enthesopathy rather than the amount of exercise.
Objective Moderate mechanical stress is necessary for preserving the cartilage. The clinician empirically understands that prescribing only exercise will progress osteoarthritis (OA) for knee OA patients with abnormal joint movement. When prescribing exercise for OA, we hypothesized that degeneration of articular cartilage could be further prevented by combining interventions with the viewpoint of normalizing joint movement. Design Twelve-week-old ICR mice underwent anterior cruciate ligament transection (ACL-T) surgery in their right knee and divided into 4 groups: ACL-T, controlled abnormal joint movement (CAJM), ACL-T with exercise (ACL-T/Ex), CAJM with exercise (CAJM/Ex). Animals in the walking group were subjected to treadmill exercise 6 weeks after surgery, which included walking for 18 m/min, 30 min/d, 3 d/wk for 4 weeks. Joint instability was measured by anterior drawer test, and safranin-O staining and immunohistochemical staining were performed. Results OARSI (Osteoarthritis Research Society International) score of ACL-T/Ex group showed highest among 4 groups ( P < 0.001). And CAJM/Ex group was lower than ACL-T/Ex group. Positive cell ratio of IL-1β and MMP-13 in CAJM/Ex group was lower than ACL-T/Ex group ( P < 0.05). Conclusions We found that the state of the intra-articular environment can greatly influence the effect of exercise on cartilage degeneration, even if exercise is performed under the same conditions. In the CAJM/Ex group where joint movement was normalized, abnormal mechanical stress such as shear force and compression force accompanying ACL cutting was alleviated. These findings may highlight the need to consider an intervention to correct abnormal joint movement before prescribing physical exercise in the treatment of OA.
Objective: Abnormal joint instability contributes to cartilage damage and osteophyte formation. We investigated whether controlling joint instability inhibited chronic synovial membrane inflammation and delayed osteophyte formation and examined the role of transforming growth factor-beta (TGF-b) signaling in the associated mechanism. Design: Rats (n ¼ 94) underwent anterior cruciate ligament (ACL) transection. Anterior tibial instability was either controlled (CAM group) or allowed to continue (SHAM group). At 2, 4, and 8 weeks after surgery, radiologic, histopathologic, immunohistochemical, immunofluorescent, and enzyme-linked immunosorbent assay examinations were performed to evaluate osteophyte formation and TGF-b signaling.Results: Joint instability increased cartilage degeneration score and osteophyte formation, and cell hyperplasia and proliferation and synovial thickening were observed in the synovial membrane. Major findings were increased TGF-b expression and Smad2/3 following TGF-b phosphorylation in synovial membarene, articular cartilage, and the posterior tibial growth plate (TGF-b expression using ELISA: 4 weeks; P ¼ 0.009, 95% CI [260.1e1340.0]) (p-Smad2/3 expression density: 4 weeks; P ¼ 0.024, 95% CI [1.67e18.27], 8 weeks; P ¼ 0.034, 95% CI [1.25e25.34]). However, bone morphogenetic protein (BMP)-2 and Smad1/5/8 levels were not difference between the SHAM model and the CAM model. Conclusions: This study showed that the difference between anterior tibial instability caused a change in the expression level of TGF in the posterior tibia and synovial membrane, and the reaction might be consequently involved in osteophyte formation.
Cartilage degeneration is the main pathological component of knee osteoarthritis (OA), but no effective treatment for its control exists. Although exercise can inhibit OA, the abnormal joint movement with knee OA must be managed to perform exercise. Our aims were to determine how controlling abnormal joint movement and treadmill exercise can suppress cartilage degeneration, to analyze the tissues surrounding articular cartilage, and to clarify the effect of treatment. Twelve-week-old ICR mice (n = 24) underwent anterior cruciate ligament transection (ACL-T) surgery on their right knees and were divided into three groups as follows: ACL-T, animals in the walking group subjected to ACL-T; controlled abnormal joint movement (CAJM), and CAJM with exercise (CAJM + Ex) (n = 8/group). Walking-group animals were subjected to treadmill exercise 6 weeks after surgery, including walking for 18 m/min, 30 min/day, 3 days/week for 8 weeks. Safranin-O staining, hematoxylin-eosin staining, and immunohistochemical staining were performed. The OARSI (Osteoarthritis research Society international) score was lower in the CAJM group than in the ACL-T group and was even lower in the CAJM + Ex group. The CAJM group had a lower meniscal injury score than the ACL-T group, and the CAJM + Ex group demonstrated a less severe synovitis than the ACL-T and CAJM groups. The observed difference in the perichondrium tissue damage score depending on the intervention method suggests different therapeutic effects, that normalizing joint motion can solve local problems in the knee joint, and that the anti-inflammatory effect of treadmill exercise can suppress cartilage degeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.