In the long axon of a neuron, cargo transport between the cell body and terminal synaptic region are mainly supported by the motor proteins kinesin and dynein, which are nano-sized drivers. Synaptic materials packed as cargos are anterogradely transported to the synaptic region by kinesin, whereas materials accumulated at the axon terminals are returned to the cell body by dynein. Extreme value analysis, typically used for disaster prevention in our society, was applied to analyze the velocity of kinesin and dynein nanosized drivers to disclose their physical properties in living cells.
In mammalian cells, there exist approximately 40 types of microtubule motor proteins that are assigned to specific cargo deliveries. For example, the kinesin-1 family motor KIF5 is the major motor responsible for anterograde mitochondrial transport, whereas the kinesin-3 family motor KIF1A is responsible for synaptic vesicle precursor transport. In contrast, cytoplasmic dynein is responsible for retrograde transport of nearly all cargos. The force and velocity of these microtubule motors have been investigated in in-vitro single-molecule experiments. In the present study, we compared the intracellular force and velocity of various types of motors in the mammalian neuronal axon obtained by non-invasive force measurement (fluctuation analysis) and extreme value analysis with those obtained by previous single-molecule experiments. As we found a high correlation between our results and the previous results, we next investigated synaptic vesicle precursor transport by hereditary spastic paraplegia-associated KIF1A variants (V8M, R350G, and A255V). KIF1A-V8M and KIF1A-A255V exhibited force and velocity impairment in mammalian neuronal axons, whereas the physical property of KIF1A-R350G was similar to that of the wild type. We believe that the development of new analytical techniques for investigating intracellular cargo transports is helpful to elucidate the molecular mechanism of KIF1A-associated neurological disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.