Conflicts of interestWC has no disclosures on file. PL has served as an investigator for Merck. AMM is an employee of Sun Pharmaceutical Industries, Inc.; and has individual shares in Johnson and Johnson, and as part of retirement account/mutual funds. SJR is an employee of Sun Pharmaceutical Industries, Inc. WL has conducted research funded by AbbVie, Amgen, Janssen, Leo, Novartis, Pfizer, Regeneron/Sanofi and TRex Bio.
Revertant mosaicism (RM) is a phenomenon in which inherited mutations are spontaneously corrected in somatic cells. RM occurs in some congenital skin diseases, but genetic validation of RM in clinically revertant skin has been challenging, especially when homologous recombination (HR) is responsible for RM. Here, we introduce nanopore Cas9-targeted sequencing (nCATS) for identifying HR in clinically revertant skin. We took advantage of compound heterozygous COL7A1 mutations in a patient with recessive dystrophic epidermolysis bullosa who showed revertant skin spots. Cas9-mediated enrichment of genomic DNA (gDNA) covering the two mutation sites (>8 kb) in COL7A1 and subsequent MinION sequencing successfully detected intragenic crossover in the epidermis of the clinically revertant skin. This method enables the discernment of haplotypes of up to a few tens of kilobases of gDNA. Moreover, it is devoid of polymerase chain reaction amplification, which can technically induce recombination. We, therefore, propose that nCATS is a powerful tool for understanding complicated gene modifications, including RM.
It is believed epithelial cells that have participated in a wound repair elicit a more efficient but locally restricted response to future injuries. However here we show that the cell adaptation resulting from a localised tissue damage has a wide spatial impact at a scale not previously noticed. We demonstrate that away from injured site, after a first injury a specific epithelial stem cell population gives rise to long term wound-memory progenitors residing in their own niche of origin. Notably these progenitors have not taken part in the first wound healing but become pre-activated through priming. This adaptation differs from classical features of trained immunity previously shown to be adopted by other epithelial stem cells. Our newly identified wound-distal memory cells display a cell-autonomous transcriptional pre-activated state leading to an enhanced wound repair ability that can be partially recapitulated through epigenetic perturbation even in absence of an injury. Importantly, the harmful consequences of wound repair, such as exacerbated tumorigenesis, occur within these primed cells and follow their spatial distribution. Overall, we show that sub-organ scale adaptation of an injury relies on spatially organised and memory-dedicated progenitors, characterised by an epigenetic actionable cell state, that predisposes to tumour onset.
Epithelial cells that participated in wound repair elicit a more efficient response to future injuries, which is believed to be locally restricted. Here we show that cell adaptation resulting from a localized tissue damage has a wide spatial impact at a scale not previously appreciated. We demonstrate that a specific stem cell population, distant from the original injury, originates long-lasting wound memory progenitors residing in their own niche. Notably, these distal memory cells have not taken part in the first healing but become intrinsically pre-activated through priming. This cell state, maintained at the chromatin and transcriptional level, leads to an enhanced wound repair that is partially recapitulated through epigenetic perturbation. Importantly wound memory has long-term harmful consequences, exacerbating tumourigenesis. Overall, we show that sub-organ-scale adaptation to injury relies on spatially organized memory-dedicated progenitors, characterized by an actionable cell state that establishes an epigenetic field cancerization and predisposes to tumour onset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.