The valence state and concentration of metallic pollutants are important factors contributing to the health effects of respirable particulate matter (PM); however, they have not been well studied. In this study, coarse and fine powder samples of atmospheric PM were collected using a cyclone system at Kanagawa (KO), Saitama (SA), and Fukuoka (FU) in Japan in 2017. Energy dispersive X-ray fluorescence spectroscopy (EDXRF) was used to measure the concentrations of nine metallic elements (Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb), and X-ray absorption fine structure (XAFS) spectroscopy was used to analyze the valence states of target elements (Cr, Mn, Fe, Cu, and Zn). The EDXRF results indicated that the average contents of Fe, Ti, and Zn were much higher than those of the other six elements in all samples. The XAFS results showed that the major valence states of the elements were Cr(III), Mn(II), Fe(III), Cu(II), and Zn(II). The percentages of Mn(IV), Fe(II), and Cu(0) were higher in KO and SA samples than in FU samples. Mn(0) and Zn(0) were detected in some samples only, and Cu(I) was not detected in any samples. Correlation analysis, principal component analysis, and cluster analysis were performed on the EDXRF and XAFS data of the target elements. The source identification results showed that the sources of metal contaminants in the samples varied considerably between sampling sites and depended on the industrial structure and geographical location of the sampling area. Our findings on the different valence states of the elements may be important for determining the toxicity of PM at different locations.
Cyclone sampling devices have been helpful in assessing the toxic effects of fine particulate matter (PM2.5). The particle collection efficiency of sampling devices is critical. This study investigated the effect of cyclone size on particle size, chemical composition, and particle toxicity. Three cyclones with different inner diameters (12–68 mm) were tested for penetration using an aerodynamic particle sizer, fluorescent polystyrene latex, and a differential mobility analyzer. The elemental and water-soluble ion compositions of the particles collected by different cyclones were compared. An evaluation of the particles’ toxicity was conducted by comparing the results of dithiothreitol (DTT), limulus amebocyte lysate (LAL), and cell exposure assays. The experimental evaluation showed a 50% cut-size of the cyclones between 0.17–0.28, 0.34–0.36, and 0.70 μm for the small, medium, and large cyclones, respectively. To collect PM2.5 and evaluate separation performance in the real environment, the small and large cyclones were selected according to the particle penetration and flow rate. A comparison of chemical composition and enrichment factor values found that the particles in the small cyclone samples contained smaller and more anthropogenic sources than those in the large cyclone samples. The oxidative potential (OP) measured by the DTT assay of the samples collected using the small and large cyclones differed across sampling periods and associated with the transition metals. The viability of human epithelial A549 cells after exposure to the collected particles using the cyclones was different across sampling periods and associated with OP. The endotoxin concentrations measured in the LAL assay were found only in the large cyclone samples; they affected the estimated level of cytokine based on IL(interleukin)-6 release from human leukemia monocytic (THP-1) cells derived macro-phage-like cells. Regardless of the size, the cyclone techniques used in this study to collect aerosol particles would be a powerful tool for a detailed evaluation of particle toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.