Both the AWS and ATQ may be suitable devices for difficult intubation by inexperienced personnel in this manikin simulated scenario. Further studies in a clinical setting are necessary to confirm these findings.
Fine crackles are frequently heard in patients with interstitial lung diseases (ILDs) and are known as the sensitive indicator for ILDs, although the objective method for analyzing respiratory sounds including fine crackles is not clinically available. We have previously developed a machine-learning-based algorithm which can promptly analyze and quantify the respiratory sounds including fine crackles. In the present proof-of-concept study, we assessed the usefulness of fine crackles quantified by this algorithm in the diagnosis of ILDs.
We evaluated the fine crackles quantitative values (FCQVs) in 60 participants who underwent high-resolution computed tomography (HRCT) and chest X-ray in our hospital. Right and left lung fields were evaluated separately.
In sixty-seven lung fields with ILDs in HRCT, the mean FCQVs (0.121 ± 0.090) were significantly higher than those in the lung fields without ILDs (0.032 ± 0.023, P < .001). Among those with ILDs in HRCT, the mean FCQVs were significantly higher in those with idiopathic pulmonary fibrosis than in those with other types of ILDs (P = .002). In addition, the increased mean FCQV was associated with the presence of traction bronchiectasis (P = .003) and honeycombing (P = .004) in HRCT. Furthermore, in discriminating ILDs in HRCT, an FCQV-based determination of the presence or absence of fine crackles indicated a higher sensitivity compared to a chest X-ray-based determination of the presence or absence of ILDs.
We herein report that the machine-learning-based quantification of fine crackles can predict the HRCT findings of lung fibrosis and can support the prompt and sensitive diagnosis of ILDs.
We found that paramedics could achieve a high tracheal intubation success rate using the AWS independent of previous airway management experience. Better intubation performance with the AWS was observed in paramedics without clinical experience with the ML.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.