The Raf-like protein kinase abscisic acid (ABA) and abiotic stress-responsive Raf-like kinase (ARK) previously identified in the moss Physcomitrium (Physcomitrella) patens acts as an upstream regulator of subgroup III SNF1-related protein kinase2 (SnRK2), the key regulator of ABA and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2, including the role of ABA receptor-associated group A PP2C (PP2C-A), are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic P. patens ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance, and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in the wild type (WT). The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking protein phosphatase 2C-A (PP2C-A) was similar to that in the WT, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense mutant lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. Therefore, ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototype mechanism for ABA and abiotic stress responses in plants.
Polyunsaturated fatty acids, such as arachidonic acid, are accumulated in brain and induce neuronal differentiation. Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) and hydroxyeicosatetraenoic acids (HETEs) by cytochrome P450s. In this study, we found that 14,15‐EET and 20‐HETE‐enhanced NGF‐induced rat pheochromocytoma PC12 cell neurite outgrowth even at the concentration of 100 nmol L−1. LC‐MS analysis revealed that 14,15‐EET was effectively produced from arachidonic acid by rat CYP2C11, 2C13, and 2C23, and these P450s were expressed in PC12 cells. An inhibitor of these P450s, ketoconazole, inhibited neurite outgrowth, whereas inhibition of soluble epoxide hydrolase, which hydrolyzes EETs to their corresponding diols enhanced neurite outgrowth. To determine the mechanism of neurite formation enhancement by arachidonic acid metabolites, we focused on transient receptor potential (TRP) channels expressed in PC12 cells. The TRPV4 inhibitor HC067047, but not the TRPV1 inhibitor capsazepine, inhibited the effects of 14,15‐EET on neurite outgrowth of PC12. Furthermore, 14,15‐EET increased the cytosolic calcium ion concentration and this increase was inhibited by HC067047. 14,15‐EET also enhanced neurite outgrowth of primary cultured neuron from rat hippocampus. This study suggests that arachidonic acid metabolites produced by P450 contribute to neurite outgrowth through calcium influx.
The Raf-like protein kinase ARK previously identified in the moss Physcomitrella patens acts as an upstream regulator of subgroup III SnRK2, the key regulator of abscisic acid (ABA) and abiotic stress responses. However, the mechanisms underlying activation of ARK by ABA and abiotic stress for the regulation of SnRK2 including the role of ABA receptor-associated group A PP2C (PP2C-A) are not understood. We identified Ser1029 as the phosphorylation site in the activation loop of ARK, which provided a possible mechanism for regulation of its activity. Analysis of transgenic ark lines expressing ARK-GFP with Ser1029-to-Ala mutation indicated that this replacement causes reductions in ABA-induced gene expression, stress tolerance and SnRK2 activity. Immunoblot analysis using an anti-phosphopeptide antibody indicated that ABA treatments rapidly stimulate Ser1029 phosphorylation in wild type. The phosphorylation profile of Ser1029 in ABA-hypersensitive ppabi1 lacking PP2C-A was similar to that in wild type, whereas little Ser1029 phosphorylation was observed in ABA-insensitive ark missense lines. Furthermore, newly isolated ppabi1 ark lines showed ABA-insensitive phenotypes similar to those of ark lines. These results indicate that ARK is a primary activator of SnRK2, preceding negative regulation by PP2C-A in bryophytes, which provides a prototypal mechanism for ABA and abiotic stress-responses in embryophytes.One sentence summaryPhysiological characterization of various moss mutants revealed a common mechanism for phytohormone responses under water deficit in all land plants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.