Background and Purpose— Multilineage-differentiating stress-enduring cells are endogenous nontumorigenic reparative pluripotent-like stem cells found in bone marrow, peripheral blood, and connective tissues. Topically administered human multilineage-differentiating stress-enduring cells into rat/mouse stroke models differentiated into neural cells and promoted clinically relevant functional recovery. However, critical questions on the appropriate timing and dose, and safety of the less invasive intravenous administration of clinical-grade multilineage-differentiating stress-enduring cell–based product CL2020 remain unanswered. Methods— Using an immunodeficient mouse lacunar model, CL2020 was administered via the cervical vein in different doses (high dose=5×10 4 cells/body; medium dose=1×10 4 cells/body; low dose=5×10 3 cells/body) at subacute phase (≈9 days after onset) and chronic phase (≈30 days). Cylinder test, depletion of human cells by diphtheria toxin administration, immunohistochemistry, and human specific-genome detection were performed. Results— Tumorigenesis and adverse effects were not detected for up to 22 weeks. The high-dose group displayed significant functional recovery compared with the vehicle group in cylinder test in subacute-phase–treated and chronic-phase–treated animals after 6 weeks and 8 weeks post-injection, respectively. In the high-dose group of subacute-phase–treated animals, robust and stable recovery in cylinder test persisted up to 22 weeks compared with the vehicle group. In both groups, intraperitoneal injection of diphtheria toxin abrogated the functional recovery. Anti-human mitochondria revealed CL2020 distributed mainly in the peri-infarct area at 1, 10, and 22 weeks and expressed NeuN (neuronal nuclei)- and MAP-2 (microtubule-associated protein-2)-immunoreactivity. Conclusions— Intravenously administered CL2020 was safe, migrated to the peri-infarct area, and afforded functional recovery in experimental stroke.
OBJECTIVEMultilineage-differentiating stress-enduring (Muse) cells are pluripotent stem cells, which can be harvested from the bone marrow. After transplantation, Muse cells can migrate to an injured site of the body and exert repair effects. However, it remains unknown whether Muse cell transplantation can be an effective treatment in spinal cord injury (SCI).METHODSThe authors used a rat model of thoracic spinal cord contusion injury. For Muse cell transplantation, the clinical product CL2020 containing 300,000 Muse cells was administered intravenously 1 day after midthoracic SCI. Animals were divided into CL2020 (n = 11) and vehicle-treated (n = 15) groups. Behavioral and histological evaluations were conducted over a period of 8 weeks to see whether intravenous CL2020 administration provided therapeutic effects for SCI. The effects of human-selective diphtheria toxin on reversion of the therapeutic effects of CL2020 were also investigated.RESULTSHindlimb motor function significantly improved after CL2020 transplantations. Importantly, the effects were reverted by the human-selective diphtheria toxin. In immunohistochemical analyses, the cystic cavity formed after the injury was smaller in the CL2020 group. Furthermore, higher numbers of descending 5-hydroxytryptamine (5-HT) fibers were preserved distal to the injury site after CL2020 administration. Eight weeks after the injury, Muse cells in CL2020 were confirmed to differentiate most predominantly into neuronal cells in the injured spinal cord.CONCLUSIONSFollowing SCI, Muse cells in CL2020 can reach the injured spinal cord after intravenous administration and differentiate into neuronal cells. Muse cells in CL2020 facilitated nerve fiber preservation and exerted therapeutic potential for severe SCI.
Radiation therapy is sometimes performed to control intracranial acute lymphoblastic leukemia (ALL), but may lead to radiation-induced malignant glioma. The clinical, radiological, histological, and molecular findings are described of three cases of radiation-induced glioblastoma after the treatment for ALL. They received radiation therapy at age 6-8 years. The latency from radiation therapy to the onset of radiation-induced glioblastoma was 5-10 years. Magnetic resonance imaging demonstrated diffuse lesions with multiple small enhanced lesions in all cases. Histological examination showed that the tumors consisted of mainly small round astrocytic atypical cells in one case, and astrocytic atypical cells with elongated cytoplasm and nuclear pleomorphism with small cell component in two cases. Microvascular proliferation was present in all cases. Immunohistochemical analysis for B-Raf V600E, and mutational analysis for the isocitrate dehydrogenase (IDH) 1, IDH2, and H3F3A gene revealed the wild-type alleles in all three cases. The integrated diagnoses were IDH wild-type glioblastoma, and local irradiation and concomitant temozolomide were performed. After the initial treatment, significant shrinkage of the diffuse lesion and enhanced lesion was found in all cases. Radiation-induced glioblastoma occurring after the treatment for ALL had unique clinical, radiological, histological, and molecular characteristics in our three cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.