Cisplatin, cis-diamminedichloro-platinum (CDDP), is a widely used anticancer agent, the clinical applications of which have been limited by severe nephrotoxicity. Although dosing timedependent differences in CDDP-induced nephrotoxicity have been reported in both humans and laboratory animals, the underlying mechanism remains unknown. In the present study, we investigated the molecular mechanism for the dosing-time dependency of the nephrotoxic effect of CDDP in mice. CDDPinduced nephrotoxicity was significantly attenuated by injecting CDDP at times of the day when its renal clearance was enhanced. The dosing-time dependency of the nephrotoxic effect was parallel to that of CDDP incorporation into renal DNA. Two types of transporters, organic cation transporter 2 (OCT2, encoded by Slc22a2) and multidrug and toxin extrusion 1 (MATE1, encoded by Slc47a1), are responsible for the renal excretion of CDDP. The expression of OCT2, but not MATE1, exhibited a significant time-dependent oscillation in the kidneys of mice. The circadian expression of OCT2 was closely related to the dosing-time dependency of CDDP incorporation into renal DNA. Molecular components of the circadian clock regulated the renal expression of Slc22a2 mRNA by mediating peroxisome proliferator-activated receptor-a, which resulted in rhythmic oscillations in OCT2 protein levels. These findings indicate a clock-regulated mechanism of dosing time-dependent changes in CDDP-induced nephrotoxicity and also suggest a molecular link between the circadian clock and renal xenobiotic excretion.
Xanthine oxidase (XOD), also known as xanthine dehydrogenase, is a rate-limiting enzyme in purine nucleotide degradation, which produces uric acid. Uric acid concentrations in the blood and liver exhibit circadian oscillations in both humans and rodents; however, the underlying mechanisms remain unclear. Here, we demonstrate that XOD expression and enzymatic activity exhibit circadian oscillations in the mouse liver. We found that the orphan nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) transcriptionally activated the mouse gene and that bile acids suppressed transactivation. The synthesis of bile acids is known to be under the control of the circadian clock, and we observed that the time-dependent accumulation of bile acids in hepatic cells interfered with the recruitment of the co-transcriptional activator p300 to PPARα, thereby repressing expression. This time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the hepatic expression of XOD, which, in turn, led to circadian alterations in uric acid production. Finally, we also demonstrated that the anti-hyperuricemic effect of the XOD inhibitor febuxostat was enhanced by administering it at the time of day before hepatic XOD activity increased. These results suggest an underlying mechanism for the circadian alterations in uric acid production and also underscore the importance of selecting an appropriate time of day for administering XOD inhibitors.
A number of diverse cell-surface proteins are anchored to the cytoskeleton via scaffold proteins. Na+/H+ exchanger regulatory factor-1 (NHERF1), encoded by the Slc9a3r1 gene, functions as a scaffold protein, which is implicated in the regulation of membrane expression of various cell-surface proteins. Here, we demonstrate that the circadian clock component PERIOD2 (PER2) modulates transcription of the mouse Slc9a3r1 gene, generating diurnal accumulation of NHERF1 in the mouse liver. Basal expression of Slc9a3r1 was dependent on transcriptional activation by p65/p50. PER2 bound to p65 protein and prevented p65/p50-mediated transactivation of Slc9a3r1. The time-dependent interaction between PER2 and p65 underlay diurnal oscillation in the hepatic expression of Slc9a3r1/NHERF1. The results of immunoprecipitation experiments and liquid chromatography-mass spectrometry analysis of mouse liver revealed that NHERF1 time-dependently interacted with fatty acid transport protein-5 (FATP5). Temporary accumulation of NHERF1 protein stabilized plasmalemmal localization of FATP5, thereby enhancing hepatic uptake of fatty acids at certain times of the day. Our results suggest an unacknowledged role for PER2 in regulating the diurnal expression of NHERF1 in mouse liver. This machinery also contributed to diurnal changes in the ability of hepatic cells to uptake fatty acids.
the expression and function of some xenobiotic transporters varies according to the time of day, causing the dosing time-dependent changes in drug disposition and toxicity. Multidrug resistanceassociated protein-4 (MRP4), an ATP binding cassette (ABC) efflux transporter encoded by the Abcc4 gene, is highly expressed in bone marrow cells (BMCs) and protects them against xenobiotics, including chemotherapeutic drugs. In this study, we demonstrated that MRP4 was responsible for the extrusion of oxaliplatin (L-OHP), a platinum (Pt)-based chemotherapeutic drug, from BMCs of mice, and that the efflux transporter expression exhibited significant diurnal variation. Therefore, we investigated the relevance of the diurnal expression of MRP4 in BMCs for L-OHPinduced myelotoxicity in mice maintained under standardized light/dark cycle conditions. After intravenous injection of L-OHP, the Pt content in BMCs varied according to the injection time. Lower Pt accumulation in BMCs was detected in mice after injection of L-OHP at the mid-dark phase, during which the expression levels of MRP4 increased. Consistent with these observations, the myelotoxic effects of L-OHP were attenuated when mice were injected with L-OHP during the dark phase. This dosing schedule also alleviated the L-OHP-induced reduction of the peripheral white blood cell count. The present results suggest that the myelotoxicity of L-OHP is attenuated by optimizing the dosing schedule. Diurnal expression of MRP4 in BMCs is associated with the dosing time-dependent changes in L-OHP-induced myelotoxicity. Daily variations in biological functions, such as gene expression and protein synthesis, are thought to be important factors affecting the efficacy and/or toxicity of drugs; a large number of drugs cannot be expected to have the same potency at different administration times 1,2. Consequently, administration of drugs at appropriate times of day can improve the outcome of pharmacotherapy by maximizing their potency and minimizing their toxicity, whereas drug administration at an inappropriate time of day can induce severe side effects. Dosing time-dependent differences in the drug effects are due, at least in part, to 24-h changes in drug disposition such as absorption, distribution, metabolism, and elimination 3-6. ATP binding cassette (ABC) transporters are widely known as energy-dependent efflux pumps that expel cytotoxic substances, including chemotherapeutic drugs. They are expressed in epithelial cells of several organs, including the brain, liver, intestine, and kidney 7 , and function as a barrier to limit intestinal absorption of many drugs and their distribution to different tissues 8. Furthermore, several types of ABC transporters also function in the biliary, intestinal, and renal elimination of drugs 9. The expression and function of some ABC transporters, such as P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer-resistant protein (BCRP), exhibit diurnal variation, resulting in dosing time-dependent differences i...
Xanthine oxidase (XOD), also known as xanthine dehydrogenase, is a rate-limiting enzyme in purine nucleotide degradation, which produces uric acid. Uric acid concentrations in the blood and liver exhibit circadian oscillations in both humans and rodents; however, the underlying mechanisms remain unclear. In this study, we demonstrated that XOD expression and enzymatic activity exhibited circadian oscillations in the mouse liver. The orphan nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) transcriptionally activated the mouse XOD gene and that bile acids suppressed the XOD transactivation. The synthesis of bile acids is known to be under the control of circadian clock, and we observed that the time-dependent accumulation of bile acids in hepatic cells interfered with the recruitment of the co-transcriptional activator p300 to PPARα, thereby repressing XOD expression. This time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the hepatic expression of XOD, which, in turn, led to circadian alterations in uric acid production. Finally, we also demonstrated that the anti-hyperuricemic effect of the XOD inhibitor febuxostat was enhanced by administering it at the time of day before hepatic XOD activity increased. These results suggest an underlying mechanism for the circadian alterations in uric acid production and also underscore the importance of selecting an appropriate time of day for administering XOD inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.