Flash photolysis and K-edge x-ray absorption spectroscopy (XAS) were used to investigate the functional and structural effects of pH on the oxygen affinity of three homologous arthropod hemocyanins (Hcs). Flash photolysis measurements showed that the well-characterized pH dependence of oxygen affinity (Bohr effect) is attributable to changes in the oxygen binding rate constant, k on , rather than changes in k off . In parallel, coordination geometry of copper in Hc was evaluated as a function of pH by XAS. It was found that the geometry of copper in the oxygenated protein is unchanged at all pH values investigated, while significant changes were observed for the deoxygenated protein as a function of pH. The interpretation of these changes was based on previously described correlations between spectral lineshape and coordination geometry obtained for model compounds of known structure (Blackburn, N. J., Strange, R. W., Reedijk, J., Volbeda, A., Farooq, A., Karlin, K. D., and Zubieta, J. (1989) Inorg. Chem., 28, 1349 -1357). A pH-dependent change in the geometry of cuprous copper in the active site of deoxyHc, from pseudotetrahedral toward trigonal was assigned from the observed intensity dependence of the 1s 3 4p z transition in x-ray absorption near edge structure (XANES) spectra. The structural alteration correlated well with increase in oxygen affinity at alkaline pH determined in flash photolysis experiments. These results suggest that the oxygen binding rate in deoxyHc depends on the coordination geometry of Cu(I) and suggest a structural origin for the Bohr effect in arthropod Hcs. Hemocyanins (Hcs)3 are oxygen carrier and storage proteins found in molluscs and arthropods. Significant differences are observed between mollusc and arthropod Hcs in size of the functional units and in their tertiary and quaternary structures. Specifically, arthropod Hcs are structurally homogenous oligomeric proteins with a minimal functional subunit of 75 kDa. Under physiological conditions in the presence of calcium, the subunits are typically arranged in hexamers and dodecamers. Removal of Ca 2ϩ with EDTA at neutral pH causes dissociation of the dodecamer into hexamers, which can be dissociated into monomers at alkaline pH (1). The different aggregation states are related to modified oxygen binding properties (2). As generally observed for respiratory proteins, a fundamental physiological property of Hc is its competence to bind oxygen with different affinity in response to allosteric effectors including hydrogen ions.Detailed structural information concerning the active site of Hcs is derived mainly from a limited set of x-ray crystallographic investigations. The active site structures of the deoxy form have been described for two arthropod Hcs, Panulirus interruptus (3) and Limulus polyphemus (subunit II) (4). However, a comparison of the results is limited by the different solution conditions from which the proteins were crystallized. In both examples, each Cu(I) of the binuclear active site is coordinated by the ⑀-nitrog...
Electron transfer (ET) through and between proteins is a fundamental biological process. The activation energy for an ET reaction depends upon the Gibbs energy change upon ET (DeltaG(0)) and the reorganization energy. Here, we characterized ET from Pseudomonas aeruginosa cytochrome c(551) (PA) and its designed mutants to cupredoxins, Silene pratensis plastocyanin (PC) and Acidithiobacillus ferrooxidans rusticyanin (RC), through measurement of pseudo-first-order ET rate constants (k(obs)). The influence of the DeltaG (0) value for ET from PA to PC or RC on the k(obs) value was examined using a series of designed PA proteins exhibiting a variety of E (m) values, which afford the DeltaG (0) variation range of 58-399 meV. The plots of the k(obs) values obtained against the DeltaG(0) values for both PA-PC and PA-RC redox pairs could be fitted well with a single Marcus equation. We have shown that the ET activity of cytochrome c can be controlled by tuning the E(m) value of the protein through the substitution of amino acid residues located in hydrophobic-core regions relatively far from the redox center. These findings provide novel insights into the molecular design of cytochrome c, which could be utilized for controlling its ET activity by means of protein engineering.
Tyrosinases catalyze the o-hydroxylation of monophenols (monophenolase activity) and the oxidation of o-diphenols to o-quinones (diphenolase activity) and possess a dinuclear copper active site. The O2 binding kinetics of oxytyrosinase is studied by flash-photolysis measurements, and the O2 binding rate constant (kO2) is obtained as kO2 = 13 +/- 3 muM-1 s-1. Small molecules, such as carbon monoxide and p-nitrophenol (a substrate-analogue inhibitor), are demonstrated to affect O2 binding kinetics. The activation enthalpy of the rate-limiting step of O2 binding is calculated by the temperature dependence of kO2 to be 12.8 +/- 2.6 kcal/mol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.