Random phase masks are important technical elements for realizing holographic memory systems that enable high density recording. However, the broadly distributed Fourier spectrum often presents a problem because wide recording spots result in reduced total storage capacity for a recording medium. In the present study, we propose modified random phase masks with phase modulation elements exhibiting Gaussian profiles to suppress the spread of the recording spot and keep it in a narrow area, based on the reduction of the high-frequency components in a random phase pattern. We confirm the effectiveness of the proposed random phase mask using simulations of a computer-generated binary hologram. However, issues still remain in terms of the fabrication of random phase masks with Gaussian profiles. Therefore, we evaluate the feasibility of fabricating the proposed random phase mask using molecular diffusion under photopolymerization. The results confirm the feasibility of this approach over a relatively wide area for actual fabrication.
In this paper, we propose a novel approach to fabricate fluidic chips. The method utilizes molecular cross-diffusion, induced by photopolymerization under ultraviolet (UV) irradiation in a channel pattern, to form the channel structures. During channel structure formation, the photopolymer layer still contains many uncured molecules. Subsequently, a top substrate is attached to the channel structure under adequate pressure, and the entire chip is homogenously irradiated by UV light. Immediately thereafter, a sufficiently sealed fluidic chip is formed. Using this fabrication process, the channel pattern of a chip can be designed quickly by a computer as binary images, and practical chips can be produced on demand at a benchtop, instead of awaiting production in specialized factories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.