Evolutionary algorithms (EAs) and swarm algorithms (SAs) have shown their usefulness in solving combinatorial and NP-hard optimization problems in various research fields. However, in the field of computer vision, related surveys have not been updated during the last decade. In this study, inspired by the recent development of deep neural networks in computer vision, which embed large-scale optimization problems, we first describe a literature survey conducted to compensate for the lack of relevant research in this area. Specifically, applications related to the genetic algorithm and differential evolution from EAs, as well as particle swarm optimization and ant colony optimization from SAs and their variants, are mainly considered in this survey.
Rear-lamp tracking at nighttime plays a momentous role in the advanced driver assistance system (ADAS), involving collision mitigation, automatic cruise control, automatic headlamp dimming, etc. Most of the existing tracking methods based on monocular camera leverage on color features. However, such tracking methods can be easily influenced by background clutter, illumination change, distance variation, and occlusion. In this paper, we propose an evolutionary adaptive rear-lamp tracking method at nighttime, in which a novel genetic algorithm powered by the probabilistic bitwise operation (PBO) is utilized. Also, to improve the robustness against various environments, a balanced fitness function is proposed by taking color information, symmetry, spatial relationship, and rigidity into account. Especially, a series of adaptive thresholds based on rear data in HSV color space is proposed to exploit color information reasonably with respect to our task. A strategy to deal with occlusion is also proposed, which relies on color information and rigidity. Moreover, to our knowledge, there is no publicly available dataset for rear-lamp tracking at nighttime. To fill the gap between the real-world application and the theoretical research, we create a novel dataset, which contains diverse traffic conditions at nighttime. The experimental results indicate that our method outperforms comparative online tracking methods in terms of success rate and center location error.
We propose a novel genetic algorithm to solve the image deformation estimation problem by preserving the genetic diversity. As a classical problem, there is always a trade-off between the complexity of deformation models and the difficulty of parameters search in image deformation. 2D cubic B-spline surface is a highly free-form deformation model and is able to handle complex deformations such as fluid image distortions. However, it is challenging to estimate an apposite global solution.To tackle this problem, we develop a genetic operation named probabilistic bitwise operation (PBO) to replace the crossover and mutation operations, which can preserve the diversity during generation iteration and achieve better coverage ratio of the solution space. Furthermore, a selection strategy named annealing selection is proposed to control the convergence. Qualitative and quantitative results on synthetic data show the effectiveness of our method.
The free-form deformation model can represent a wide range of non-rigid deformations by manipulating a control point lattice over the image. However, due to a large number of parameters, it is challenging to fit the free-form deformation model directly to the deformed image for deformation estimation because of the complexity of the fitness landscape. In this paper, we cast the registration task as a multi-objective optimization problem (MOP) according to the fact that regions affected by each control point overlap with each other. Specifically, by partitioning the template image into several regions and measuring the similarity of each region independently, multiple objectives are built and deformation estimation can thus be realized by solving the MOP with off-the-shelf multi-objective evolutionary algorithms (MOEAs). In addition, a coarse-to-fine strategy is realized by image pyramid combined with control point mesh subdivision. Specifically, the optimized candidate solutions of the current image level are inherited by the next level, which increases the ability to deal with large deformation. Also, a post-processing procedure is proposed to generate a single output utilizing the Pareto optimal solutions. Comparative experiments on both synthetic and real-world images show the effectiveness and usefulness of our deformation estimation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.