Electrophoretic measurements of micellar mobility have revealed that polyoxyethylated nonionic surfactant micelles have negative zeta potential in various electrolytes, indicating that the partition of anions into the micelle dominates the entire electrolyte partition and the induced surface potential of the micelle. Although an excess of a negative charge is thus revealed in the micelle, it is uncertain whether anions are preferably solvated in the micelles or cations are expelled from the micelles. To determine the solvation energies of single ions in the hydrophilic layer of the micelle, we have performed ion transfer voltammetric measurements at microinterfaces between nitrobenzene and aqueous tetraethyleneglycol solution, which acts as a model for the palisade layer of the micelles. The cooperative utilization of these different methods has allowed us to determine the Gibbs free energy of transfer of a single ion without an extrathermodynamic assumption. On the basis of the resulting values, the partition of ions and the zeta potential induced by the imbalance of anionic and cationic partition have been quantitatively explained.
Solvation of ions in concentrated aqueous poly(ethylene glycol) (PEG) has been studied from thermodynamic and structural viewpoints using ion-transfer voltammetry at the interface between aqueous and nitrobenzene phases and X-ray absorption fine structure (XAFS). Systematic changes in the ion-transfer potential from water to aqueous PEG have been confirmed for several ions relative to the corresponding potential of tetraethylammonium ion (Et4N+), which is almost independent of PEG concentration. The results obtained for alkali cations strongly suggest the involvement of their complexation with PEG even in relatively diluted PEG solutions. It has been implied that the solvation circumstances of Br- and ClO4- are drastically altered when the PEG concentration becomes higher than particular critical values (e.g., 30-50% PEG200), where free water molecules are diminished because of the hydration of PEG. XAFS measurements have also been performed for K+ and Br- to get direct evidence for these findings. Although the spectra at the K K-edge clearly indicate the presence of a PEG complex of K+ in relatively diluted PEG solutions ( approximately 33% PEG200), an obvious increase in its ion-transfer potential has been detected at lower PEG concentrations, indicating that complexes formed at the interface rather than in bulk solution are transferred into an organic phase. Br- is fully hydrated in 0-50% PEG solutions, whereas some water molecules are replaced by PEG when the PEG concentration increases. Increasing the PEG concentration causes decreases in the coordination number from 6 in water to 2-3 in neat PEG. Thus, the present approach not only has elucidated the structural and thermodynamic aspects of ionic solvation in aqueous PEG but also has provided the information of the hydration of PEG.
The hydration of ions in confined spaces, such as the interior of ion-exchange resins, micelles, and surface monolayers, is discussed on the basis of results obtained with X-ray absorption fine structure studies, electrophoresis, and ion-transfer voltammetry. The general trends are that anions are partly dehydrated therein, whereas cations are likely to keep their first hydration shells. For bromide ions, the hydration numbers under various circumstances have been determined. The extents of dehydration depend not only on the structure of the cationic sites electrostatically attracting bromide ions but also on whether the cationic sites are exposed to a solution or are effectively shielded from it. These findings will be useful for designing the systems for ionic recognition and separation.
The Gibbs free energies of transfer of selected ions from water to concentrated aqueous ovalbumin and albumin (DeltaW(W') G degrees j) have been determined by ion-transfer voltammetry. Negative values for the tetrabutylammonium ion suggest its direct binding to ovalbumin. In contrast, for alkali cations and bromide, the DeltaW(W') G degrees j values are positive and increase with increasing ovalbumin concentration. Positive values are confirmed for concentrated aqueous albumin and poly(styrenesulfonate) as well. The largest value (ca. 10 kJ mol(-1)) is found for the transfer of K(+) from water to 30 wt % ovalbumin. To reveal the solvation structure of these ions in ovalbumin solutions, X-ray absorption fine structure (XAFS) measurements have been performed at the K, Rb, and Br K-edges. Interestingly, the spectra obtained in 30 wt % ovalbumin solutions are identical to those for the corresponding hydrated ions. This strongly suggests that the first coordination shell structures of these ions are not affected by a large concentration of ovalbumin. The detected positive free energy of transfer is slightly lower than the hydrogen bonding energy of a water molecule and should thus come from the perturbation of the second and farther hydration shells of the ions under a water-shortage condition caused by a high concentration of ovalbumin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.