The variability in measurements of complex permittivities of tumor tissues between multiple samples could be attributed to the volume fraction of cancer cells in the excised tumor tissue. By the use of a digital photomicrograph image and hematoxylin-eosin staining, it was found that the malignant tumor tissue was not fully occupied by the cancer cells, but the cells were distributed locally in the stroma cells depending on the growth of cancer. The results showed that the volume fraction of cancer cells in the tumor tissue had a correlation to the measured conductivity and dielectric constant in the frequency range from 1 GHz to 6 GHz. It introduces a method to understand and gauge variability in measurements between different tumors.
A time-domain reflectometry breast cancer detection system was developed, which was composed of a Gaussian monocycle pulse (GMP) transmitter circuit fabricated by complementary metal oxide semiconductor (CMOS) 65 nm technology and an ultra wide-band (UWB) planar slot antenna array. The center frequency and bandwidth of the antenna were 6 and 9.2 GHz, respectively. The GMP train having the pulse width of 160 ps was generated by the 65 nm CMOS logic circuit with a core area of 0.0017 mm2 and was emitted by the 4 × 4 planar slot antenna array. The fabricated planar 4 × 4 antenna array with the matching layer could resolve the two separate 5 × 5 × 5 mm3 breast tumor phantoms, which were located at the depth of 22 mm with the spacing of 8 mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.