We identified a novel gene HJURP (Holliday junctionrecognizing protein) whose activation seemed to play a pivotal role in the immortality of cancer cells. HJURP was considered a possible downstream target for ataxia telangiectasia mutated signaling, and its expression was increased by DNA double-strand breaks (DSB). HJURP was involved in the homologous recombination pathway in the DSB repair process through interaction with hMSH5 and NBS1, which is a part of the MRN protein complex. HJURP formed nuclear foci in cells at S phase and those subjected to DNA damage. In vitro assays implied that HJURP bound directly to the Holliday junction and rDNA arrays. Treatment of cancer cells with small interfering RNA (siRNA) against HJURP caused abnormal chromosomal fusions and led to genomic instability and senescence. In addition, HJURP overexpression was observed in a majority of lung cancers and was associated with poor prognosis as well. We suggest that HJURP is an indispensable factor for chromosomal stability in immortalized cancer cells and is a potential novel therapeutic target for the development of anticancer drugs. [Cancer Res 2007; 67(18):8544-53]
Gene expression profile analysis of lung and esophageal carcinomas revealed that Dikkopf-1 (DKK1) was highly transactivated in the great majority of lung cancers and esophageal squamous cell carcinomas (ESCC). Immunohistochemical staining using tumor tissue microarrays consisting of 279 archived non-small cell lung cancers (NSCLC) and 280 ESCC specimens showed that a high level of DKK1 expression was associated with poor prognosis of patients with NSCLC as well as ESCC, and multivariate analysis confirmed its independent prognostic value for NSCLC. In addition, we identified that exogenous expression of DKK1 increased the migratory activity of mammalian cells, suggesting that DKK1 may play a significant role in progression of human cancer. We established an ELISA system to measure serum levels of DKK1 and found that serum DKK1 levels were significantly higher in lung and esophageal cancer patients than in healthy controls. The proportion of the DKK1-positive cases was 126 of 180 (70.0%) NSCLC, 59 of 85 (69.4%) SCLC, and 51 of 81 (63.0%) ESCC patients, whereas only 10 of 207 (4.8%) healthy volunteers were falsely diagnosed as positive. A combined ELISA assays for both DKK1 and carcinoembryonic antigen increased sensitivity and classified 82.2% of the NSCLC patients as positive whereas only 7.7% of healthy volunteers were falsely diagnosed to be positive. The use of both DKK1 and ProGRP increased sensitivity to detect SCLCs up to 89.4%, whereas false-positive rate in healthy donors was only 6.3%. Our data imply that DKK1 should be useful as a novel diagnostic/prognostic biomarker in clinic and probably as a therapeutic target for lung and esophageal cancer. [Cancer Res 2007;67(6):2517-25]
An increased level of dihydrouridine in tRNA Phe was found in human malignant tissues nearly three decades ago, but its biological significance in carcinogenesis has remained unclear. Through analysis of genome-wide gene-expression profiles among non-small cell lung carcinomas (NSCLC), we identified overexpression of a novel human gene, termed hDUS2, encoding a protein that shared structural features with tRNA-dihydrouridine synthases (DUS). The deduced 493-amino-acid sequence showed 39% homology to the dihydrouridine synthase 2 enzyme (Dus2) of Saccharomycescerevisiae and contained a conserved double-strand RNAbinding motif (DSRM). We found that hDUS2 protein had tRNA-DUS activity and that it physically interacted with EPRS, a glutamyl-prolyl tRNA synthetase, and was likely to enhance translational efficiencies. A small interfering RNA against hDUS2 transfected into NSCLC cells suppressed expression of the gene, reduced the amount of dihydrouridine in tRNA molecules, and suppressed growth. Immunohistochemical analysis showed significant association between higher levels of hDUS2 in tumors and poorer prognosis of lung cancer patients. Our data imply that upregulation of hDUS2 is a relatively common feature of pulmonary carcinogenesis and that selective suppression of hDUS2 enzyme activity and/or inhibition of formation of the hDUS2-tRNA synthetase complex could be a promising therapeutic strategy for treatment of many lung cancers. (Cancer Res 2005; 65(13): 5638-46)
We found cotransactivation of cell division associated 1 (CDCA1) and kinetochore associated 2 (KNTC2), members of the evolutionarily conserved centromere protein complex, in non-small cell lung carcinomas (NSCLC). Immunohistochemical analysis using lung cancer tissue microarray confirmed high levels of CDCA1 and KNTC2 proteins in the great majority of lung cancers of various histologic types. Their elevated expressions were associated with poorer prognosis of NSCLC patients. Knockdown of either CDCA1 or KNTC2 expression with small interfering RNA significantly suppressed growth of NSCLC cells. Furthermore, inhibition of their binding by a cell-permeable peptide carrying the CDCA1-derived 19-amino-acid peptide (11R-CDCA1 [398][399][400][401][402][403][404][405][406][407][408][409][410][411][412][413][414][415][416] ) that correspond to the binding domain to KNTC2 effectively suppressed growth of NSCLC cells. As our data imply that human CDCA1 and KNTC2 seem to fall in the category of cancertestis antigens, and that their simultaneous up-regulation is a frequent and important feature of cell growth/survival of lung cancer, selective suppression of CDCA1 or KNTC2 activity and/or inhibition of the CDCA1-KNTC2 complex formation could be a promising therapeutic target for treatment of lung
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.