The transcription factor sensitive to proton rhizotoxicity 1 (STOP1) regulates multiple stress tolerances. In this study, we confirmed its involvement in NaCl and drought tolerance. The root growth of the T-DNA insertion mutant of STOP1 (stop1) was sensitive to NaCl-containing solidified MS media. Transcriptome analysis of stop1 under NaCl stress revealed that STOP1 regulates several genes related to salt tolerance, including CIPK23. Among all available homozygous T-DNA insertion mutants of the genes suppressed in stop1, only cipk23 showed a NaCl-sensitive root growth phenotype comparable to stop1. The CIPK23 promoter had a functional STOP1-binding site, suggesting a strong CIPK23 suppression led to NaCl sensitivity of stop1. This possibility was supported by in planta complementation of CIPK23 in the stop1 background, which rescued the short root phenotype under NaCl. Both stop1 and cipk23 exhibited a drought tolerant phenotype and increased abscisic acid-regulated stomatal closure, while the complementation of CIPK23 in stop1 reversed these traits. Our findings uncover additional pleiotropic roles of STOP1 mediated by CIPK23, which regulates various ion transporters including those regulating K+-homeostasis, which may induce a trade-off between drought tolerance and other traits.
The SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) transcription factor regulates gene expression associated with multiple stress tolerances in plant roots. In this study, we investigated the mechanism responsible for the sensitivity of the stop1 mutant to low-oxygen stress in Arabidopsis. Transcriptomic analyses revealed that two genes involved in low-oxygen tolerance, namely GLUTAMATE DEHYDROGENASE 1 (GDH1) and GDH2, showed lower expression levels in the stop1 mutant than in the wild-type. Sensitivity of the gdh1gdh2 double-mutant to low-oxygen conditions was partly attributable to the low-oxygen sensitivity of the stop1 mutant. Two transcription factors, STOP2 and HEAT SHOCK FACTOR A2 (HsfA2), were expressed at lower levels in the stop1 mutant. An in planta complementation assay indicated that CaMV35S::STOP2 or CaMV35S::HsfA2 partially rescued the low-oxygen tolerance of the stop1 mutant, which was concomitant with recovered expression of genes regulating low-pH tolerance and genes encoding molecular chaperones. Prediction of cis-elements and in planta promoter assays revealed that STOP1 directly activated the expression of HsfA2. Similar STOP1-dependent low-oxygen sensitivity was detected in tobacco. Suppression of NtSTOP1 induced low-oxygen sensitivity, which was associated with lower expression levels of NtHsfA2 and NtGDHs compared with the wild-type. Our results indicated that STOP1 pleiotropically regulates low-oxygen tolerance by transcriptional regulation.
Malate-efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1), which mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum-resistance in Arabidopsis thaliana. Several studies showed that root AtALMT1 expression is rapidly observed in response to aluminum (within 1-hour), this early induction is an important mechanism to immediately protect roots from aluminum-toxicity. Additionally, identifying the molecular mechanisms that underlie rapid aluminum-resistance responses should lead to a better understanding of plant aluminum-sensing and -signal transduction mechanisms. In this study, histochemical analyses using GFP-tagged STOP1 proteins showed that STOP1 proteins were accumulated in the nucleus soon after aluminum-treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1-induction were observed in the presence of the protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2), but not for Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for the early induction. Finally, we report that GDH1 and 2 which are the target of STOP1 are novel aluminum-resistance genes in Arabidopsis.
Organic acids (OA) are released from roots in response to aluminum (Al), conferring an Al tolerance to plants that is regulated by OA transporters such as ALMT (Al‐activated malate transporter) and multi‐drug and toxic compound extrusion (MATE). We have previously reported that the expression level polymorphism (ELP) of AtALMT1 is strongly associated with variation in Al tolerance among natural accessions of Arabidopsis. However, although AtMATE is also expressed following Al exposure and contributes to Al tolerance, whether AtMATE contributes to the variation of Al tolerance and the molecular mechanisms of ELP remains unclear. Here, we dissected the natural variation in AtMATE expression level in response to Al at the root using diverse natural accessions of Arabidopsis. Phylogenetic analysis revealed that more than half of accessions belonging to the Central Asia (CA) population show markedly low AtMATE expression levels, while the majority of European populations show high expression levels. The accessions of the CA population with low AtMATE expression also show significantly weakened Al tolerance. A single‐population genome‐wide association study (GWAS) of AtMATE expression in the CA population identified a retrotransposon insertion in the AtMATE promoter region associated with low gene expression levels. This may affect the transcriptional regulation of AtMATE by disrupting the effect of a cis‐regulatory element located upstream of the insertion site, which includes AtSTOP1 (sensitive to proton rhizotoxicity 1) transcription factor‐binding sites revealed by chromatin immunoprecipitation‐qPCR analysis. Furthermore, the GWAS performed without the accessions expressing low levels of AtMATE, excluding the effect of AtMATE promoter polymorphism, identified several candidate genes potentially associated with AtMATE expression.
The aim of the present study was to identify a strain of endophytic Bacillus species that control tomato bacterial wilt by foliar spray application. Fifty heat-tolerant endophytic bacteria were isolated from the surface-sterilized foliar tissues of symptomless tomato plants that had been pre-inoculated with the pathogen Ralstonia pseudosolanacearum. In the primary screening, we assessed the suppressive effects of a shoot-dipping treatment with bacterial strains against bacterial wilt on tomato seedlings grown on peat pellets. Bacillus sp. strains G1S3 and G4L1 significantly suppressed the incidence of tomato bacterial wilt. In subsequent pot experiments, the biocontrol efficacy of foliar spray application was examined under glasshouse conditions. G4L1 displayed consistent and significant disease suppression, and, thus, was selected as a biocontrol candidate. Moreover, the pathogen population in the stem of G4L1-treated plants was markedly smaller than that in control plants. A quantitative real-time PCR analysis revealed that the foliar spraying of tomato plants with G4L1 up-regulated the expression of PR-1a and LoxD in stem and GluB in roots upon the pathogen inoculation, implying that the induction of salicylic acid-, jasmonic acid-, and ethylene-dependent defenses was involved in the protective effects of this strain. In the re-isolation experiment, G4L1 efficiently colonized foliar tissues for at least 4 weeks after spray application. Collectively, the present results indicate that G4L1 is a promising biocontrol agent for tomato bacterial wilt. Furthermore, to the best of our knowledge, this is the first study to report the biocontrol of bacterial wilt by the foliar spraying with an endophytic Bacillus species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.