Two procedures for the alpha-arylation of carbonyl compounds under conditions that are more neutral than those of reactions of aryl halides with alkali metal enolates are reported. The first procedure rests upon the development of catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) and the highly reactive dimeric Pd(I) complex {P(t-Bu)3]PdBr}2. By this procedure, zinc enolates prepared from alpha-bromo esters and amides react with aryl halides to form alpha-aryl esters and amides in high yields under mild conditions with 1-2 mol % catalyst and with remarkable functional group tolerance. By the second procedure, silyl ketene and silyl ketimine acetals react with aryl bromides in the presence of substoichiometric zinc fluoride, 1 mol % Pd(dba)2, and 2 mol % P(t-Bu)3 in DMF solvent at 80 degrees C. Reactions of zinc tert-butyl acetate and propionate enolates and trimethylsilyl ketene acetals of tert-butyl propionate and methyl isobutyrate with aryl bromides bearing electron-donating and potentially reactive, base-sensitive electron-withdrawing groups and with pyridyl bromides are reported. In addition, the diastereoselective coupling of phenyl bromide with an imide enolate bearing the Evans auxiliary is reported, and this study shows that racemization of base-sensitive stereocenters does not occur during the coupling process under these more neutral conditions.
The intermolecular alpha-arylation and vinylation of amides by palladium-catalyzed coupling of aryl bromides and vinyl bromides with zinc enolates of amides is reported. Reactions of three different types of zinc enolates have been developed. The reactions of aryl halides occur in high yields with isolated Reformatsky reagents generated from alpha-bromo amides, with Reformatsky reagents generated in situ from alpha-bromo amides, and with zinc enolates generated by quenching lithium enolates of amides with zinc chloride. This use of zinc enolates, instead of alkali metal enolates, greatly expands the scope of amide arylation. The reactions occur at room temperature or 70 degrees C with bromoarenes containing cyano, nitro, ester, keto, fluoro, hydroxyl, or amino functionality and with bromopyridines. Moreover, the reaction has been developed with morpholine amides, the products of which are precursors to ketones and aldehydes. The arylation of zinc enolates of amides was conducted with catalysts bearing the hindered pentaphenylferrocenyl di-tert-butylphosphine (Q-phos) or the highly reactive, dimeric, Pd(I) complex [[P(t-Bu)3]PdBr]2.
Palladium-catalyzed alpha-arylations of esters with chloroarenes are reported. The reactions of chloroarenes with the sodium enolates of tert-butyl propionate and methyl isobutyrate occur in high yields with 0.2-1 mol % of {[P(t-Bu)3]PdBr}2 or the combination of Pd(dba)2 and P(t-Bu)3 as catalyst. The reactions of chloroarenes with the Reformatsky reagent of tert-butyl acetate were most challenging but occurred in high yields for chlorobenzene and electron-poor chloroarenes catalyzed by 1 mol % of Pd(dba)2 and pentaphenylferrocenyl di-tert-butylphosphine (Q-phos).
Conditions for the coupling of bromoarenes with esters using a single base and catalyst with improved turnover numbers are described. These general conditions were made possible by using the Pd(I) catalyst {[P(t-Bu)3]PdBr}2. Reactions of acetates, propionates, and isobutyrates are presented, and reactions of all three classes of esters on a 10 g scale are described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.