Effects of transforming growth factor beta (TGF-beta) on IgA production by LPS-stimulated B cells have been studied. TGF-beta itself could augment polyclonal IgA production in concomitant inhibition of polyclonal IgM and IgG1 production. Furthermore, TGF-beta and IL-5 additively augmented IgA production. TGF-beta exerted its activity early in the culture (by 2 d in a 5-d culture) and IL-5 was required late in the culture. Surface IgA- (sIgA-) B cells responded to TGF-beta for the development of IgA-secreting cells. By contrast, sIgA+ B cells, but not sIgA- B cells, responded to IL-5 for IgA production. These results suggest that TGF-beta has a differential role in the induction of IgA production from IL-5 on murine-activated B cells.
Abstract. Hepatocyte growth factor-scatter factor (HGF-SF) is a pleiotropic cytokine with mito-, morpho-, and motogenic effects on a variety of epithelial and endothelial cells. HGF-SF activity is mediated by the c-met protooncogene, a membrane-bound tyrosine kinase. Here, we demonstrate that both genes are expressed in developing and adult mammalian brains. HGF-SF mRNA is localized in neurons, primarily in the hippocampus, the cortex, and the granule cell layer of the cerebellum, and it is also present at high levels in ependymal cells, the chorioid plexus, and the pineal body. c-met is expressed in neurons, preferentially in the CAd area of the hippocampus, the cortex, and the septum, as well as in the pons. In the embryonic mouse, brain HGF-SF and c-met are expressed as early as days 12 and 13, respectively. Neuronal expression of HGF-SF is evolutionary highly conserved and detectable beyond the mammalian class. Incubation of septal neurons in culture with HGF-SF leads to a rapid increase of c-fos mRNA levels.The results demonstrate the presence of a novel growth factor-tyrosine kinase signaling system in the brain, and they suggest that HGF-SF induces a functional response in a neuronal subpopulation of developing and adult CNS.
3beta-Hydroxysteroid-Delta24 reductase (DHCR24) is an endoplasmic reticulum-resident, multifunctional enzyme that possesses antiapoptotic and cholesterol-synthesizing activities. To clarify the molecular basis of the former activity, we investigated the effects of hydrogen peroxide (H(2)O(2)) on embryonic fibroblasts prepared from DHCR24-knockout mice (DHCR24(-/-) mouse embryonic fibroblasts). H(2)O(2) exposure rapidly induced apoptosis, which was associated with sustained activation of apoptosis signal-regulating kinase-1 and stress-activated protein kinases, such as p38 MAPK and c-Jun N-terminal kinase. Complementation of the mouse embryonic fibroblasts by adenovirus expressing DHCR24 attenuated the H(2)O(2)-induced kinase activation and apoptosis. Concomitantly, intracellular generation of reactive oxygen species (ROS) in response to H(2)O(2) was also diminished by the adenovirus, suggesting a ROS-scavenging activity of DHCR24. Such antiapoptotic effects of DHCR24 were duplicated in pheochromocytoma PC12 cells infected with adenovirus. In addition, it was found that DHCR24 exerted cytoprotective effects in the tunicamycin-induced endoplasmic reticulum stress by eliminating ROS. Finally, using in vitro-synthesized and purified proteins, DHCR24 and its C-terminal deletion mutant were found to exhibit high H(2)O(2)-scavenging activity, whereas the N-terminal deletion mutant lost such activity. These results demonstrate that DHCR24 can directly scavenge H(2)O(2), thereby protecting cells from oxidative stress-induced apoptosis.
The effects of recombinant human hepatocyte growth factor (HGF) on liver growth and function of normal and partially hepatectomized rats have been examined. HGF was continuously administered into the jugular vein because it was rapidly eliminated from the plasma (t1/2 alpha; approximately 4.5 min) and degraded. In normal rats, the labeling index of hepatocytes was increased about 6 times by the administration of HGF. HGF also decreased the prothrombin time and increased the hepaplastin and serum albumin content. In 70%-hepatectomized rats, HGF stimulated liver regeneration and increased the level of blood proteins such as hepaplastin in a dose-dependent manner. The stimulation of serum protein level seemed to result from not only the increase of hepatic cell number but also the direct effect of HGF on the protein production in hepatocytes, because HGF rapidly enhanced the protein synthesis prior to the increase of cell number and increased the mRNA content of albumin in the liver in vivo. In addition, a combination of heparin with HGF further accelerated the effects of HGF described above, possibly due to the decrease of HGF clearance. These findings suggest that HGF accelerates both the hepatic regeneration and function in vivo, and that rhHGF is clinically expected to be a potent therapeutic agent in hepatectomy and liver injury.
Death-associated protein kinase (DAP-kinase) is Ca(2+)/calmodulin-dependent serine/threonine kinase that contains ankyrin repeats and the death domain. It has been isolated as a positive mediator of interferon-gamma-induced apoptotic cell death of HeLa cells. In order to reveal the physiological role of DAP-kinase, the tissue distribution and developmental changes in mRNA expression of DAP-kinase were investigated by Northern blot and in situ hybridization analyses. DAP-kinase mRNA was predominantly expressed in brain and lung. In brain, DAP-kinase mRNA had already appeared at embryonic day 13 (E13) and was, thereafter, detected throughout the entire embryonic period. High levels of expression were detected in proliferative and postmitotic regions within cerebral cortex, hippocampus, and cerebellar Purkinje cells. These findings suggest that DAP-kinase may play an important role in neurogenesis where a physiological type of cell death takes place. The overall expression of DAP-kinase mRNA in the brain gradually declined at postnatal stages, and the expression became restricted to hippocampus, in which different expression patterns were observed among rostral, central, and caudal coronal sections, suggesting that DAP-kinase may be implicated in some neuronal functions. Furthermore, it was found that the expression of DAP-kinase mRNA was increased prior to a certain cell death induced by transient forebrain ischemia, indicating a possible relationship between DAP-kinase and neuronal cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.