Mechanistic insight into the catalytic production of ammonia from dinitrogen is needed to improve the synthesis of this vital molecule. Here we study the use of samarium diiodide (SmI2) and water in the presence of molybdenum complexes that bear PCP-type pincer ligands to synthesize ammonia. The proton-coupled electron transfer during the formation of a N–H bond on the molybdenum imide complex was found to be the rate-determining step at high catalyst concentrations. Additionally, the dimerization step of the catalyst became the rate-determining step at low catalyst concentrations. We designed PCP-type pincer ligands with various substituents at the 5- and 6-positions and observed that electron-withdrawing groups promoted the reaction rate, as predicted by density functional theory calculations. A molybdenum trichloride complex that bears a trifluoromethyl group functioned as the most effective catalyst and produced up to 60,000 equiv. ammonia based on the molybdenum atom of the catalyst, with a molybdenum turnover frequency of up to 800 equiv. min−1. The findings reported here can contribute to the development of an environmentally friendly next-generation nitrogen-fixation system.
Here, we established a mechanistic insight into the catalytic production of ammonia from dinitrogen via the combination of samarium diiodide (SmI2) and water in the presence of molybdenum complexes bearing PCP-type pincer ligands as the catalysts. The experimental and theoretical studies revealed that the rate-determining step was the proton-coupled electron transfer (PCET) during the formation of the N–H bond on the molybdenum imide complex at high catalyst concentrations. Additionally, we confirmed that the concentration of the catalyst affected the rate-determining step and the dimerisation step of the catalyst became the rate-determining step at a low catalyst concentration. Thus, we designed PCP-type pincer ligands in which various substituents were introduced at the positions 5 and/or 6, to accelerate the rate-determining PCET reaction and observed that the introduction of electron-withdrawing groups promoted the reaction rate, as predicted by density-functional theory calculations. Finally, the molybdenum trichloride complex bearing a trifluoromethyl group containing PCP-type pincer ligand functioned as the most effective catalyst for producing up to 60,000 equivalents of ammonia based on the molybdenum atom of the catalyst, with a turnover frequency of up to 800 equivalents/Mo·min−1. The amount of ammonia produced via this reaction, as well as its production rate, were approximately one order of magnitude larger than those obtained under the previous reaction conditions. The findings reported herein can contribute to the development of an environmentally friendly next-generation nitrogen fixation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.