The development of therapeutic options to promote hepatic regeneration following severe liver injury is essential. While humoral factors have been reported as mechanisms of liver regeneration, the contributions of interorgan communication to liver regeneration have not been reported. In this study, we examined the effect of a neural relay on liver regeneration via activation of serotonin release from the gastrointestinal (GI) tract. Our results demonstrated that the afferent visceral nerve from the liver activates the efferent vagus nerve from the brain, leading to activation of serotonin release from the GI tract and contributing to liver regeneration. While it is difficult to apply these results directly to human health, we believe that this study may represent a step toward developing essential therapeutics to promote liver regeneration.
Background The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD. Methods The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach. Key Results The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits. Conclusions Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver.
The etiology of non-alcoholic fatty liver disease (NAFLD) consists of various factors, including neural signal pathways. However, the molecular mechanisms of the autonomic neural signals influencing NAFLD progression have not been elucidated. Therefore, we examined the involvement of the gut-liver neural axis in NAFLD development and tested the therapeutic effect of modulation of this axis in this study. To test the contribution of the gut-liver neural axis, we examined NAFLD progression with respect to body weight, hepatic steatosis, fibrosis, intestinal tight junction, microbiota and short-chain fatty acids in NAFLD models of choline-deficient defined L-amino-acid and high-fat diet-fed mice with or without blockades of autonomic nerves from the liver. Blockade of the neural signal from the liver to the gut in these NAFLD mice models ameliorated the progression of liver weight, hepatic steatosis and fibrosis by modulating serotonin expression in the small intestine. It was related to the severity of the liver pathology, the tight junction protein expression, microbiota diversity and short-chain fatty acids. These effects were reproduced by administrating serotonin antagonist, which ameliorated the NAFLD progression in the NAFLD mice models. Our study demonstrated that the gut-liver neural axis is involved in the etiologies of NAFLD progression and that serotonin expression through this signaling network is the key factor of this axis. Therefore, modulation of the gut-liver neural axis and serotonin antagonist ameliorates fatty and fibrotic changes in non-alcoholic fatty liver, and can be a potential therapeutic target of NAFLD.This article has an associated First Person interview with the first author of the paper.
To date, various signal transducers, cytokines, growth factors, and hormones have been reported to play an important role in homeostasis of various organs. Various cells and organs are involved in the hepatic regeneration process, which proceeds as a result of the coordination of many factors. While these factors are well known to be involved in the liver regeneration after the liver injury, however, as the details of such mechanisms have not been sufficiently elucidated, the practical applicability of hepatic regeneration based on the action of these and cytokines growth factors is still unclear. In terms of the involvement of the autonomic nervous system in hepatic regeneration, cell proliferation resulting from direct signal transduction to the liver has also been reported and recent studies focusing on the inter-organ communication via neural network opened a novel aspect of this field for therapeutic applicability. Therefore, the appropriate understanding of the relationship between autonomic neural network and liver regeneration through various organs including brain, afferent nerve, efferent nerve, etc. is essential. This mini-review explains the principle of neural system involved in the inter-organ communication and its contribution on the liver regeneration upon the liver injury reviewing recent progress in this field.
Development of an effective, safe, and convenient method for gene delivery to the pancreas is a critical step toward gene therapy for pancreatic diseases. Therefore, we tested the possibility of applying the principle of hydrodynamic gene delivery for successful gene transfer to pancreas using rats as a model. The established procedure involves the insertion of a catheter into the superior mesenteric vein with temporary blood flow occlusion at the portal vein and hydrodynamic injection of DNA solution. We demonstrated that our procedure achieved efficient pancreas-specific gene expression that was 2,000-fold higher than that seen in the pancreas after the systemic hydrodynamic gene delivery. In addition, the level of gene expression achieved in the pancreas by the pancreas-specific gene delivery was comparable to the level in the liver achieved by a liver-specific hydrodynamic gene delivery. The optimal level of reporter gene expression in the pancreas requires an injection volume equivalent to 2.0% body weight with flow rate of 1 mL/s and plasmid DNA concentration at 5 μg/mL. With the exception of transient expansion of intercellular spaces and elevation of serum amylase levels, which recovered within 3 days, no permanent tissue damage was observed. These results suggest that pancreas-targeted hydrodynamic gene delivery is an effective and safe method for gene delivery to the pancreas and clinically applicable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.