Ewing's family tumors (EFTs) are highly malignant tumors arising from bone and soft tissues that exhibit EWS-FLI1 or variant EWS-ETS gene fusions in more than 85% of the cases. Here we show that CIC, a human homolog of Drosophila capicua which encodes a high mobility group box transcription factor, is fused to a double homeodomain gene DUX4 as a result of a recurrent chromosomal translocation t(4;19)(q35;q13). This translocation was seen in two cases of soft tissue sarcoma diagnosed as Ewing-like sarcoma. CIC-DUX4 exhibits a transforming potential for NIH 3T3 fibroblasts, and as a consequence of fusion with a C-terminal fragment of DUX4, CIC acquires an enhanced transcriptional activity, suggesting that expression of its downstream targets might be deregulated. Gene expression analysis identified the ETS family genes, ERM/ETV5 and ETV1, as potential targets for the gene product of CIC-DUX4. Indeed, CIC-DUX4 directly binds the ERM promoter by recognizing a novel target sequence and significantly up-regulates its expression. This study clarifies the function of CIC and its role in tumorigenesis, as well as the importance of the PEA3 subclass of ETS family proteins in the development of EFTs arising through mechanisms different from those involving EWS-ETS chimeras. Moreover, the study identifies the role of DUX4 that is closely linked to facioscapulohumeral muscular dystrophy in transcriptional regulation.
Meis1 and Hoxa9 expression is upregulated by retroviral integration in murine myeloid leukemias and in human leukemias carrying MLL translocations. Both genes also cooperate to induce leukemia in a mouse leukemia acceleration assay, which can be explained, in part, by their physical interaction with each other as well as the PBX family of homeodomain proteins. Here we show that Meis1-deficient embryos have partially duplicated retinas and smaller lenses than normal. They also fail to produce megakaryocytes, display extensive hemorrhaging, and die by embryonic day 14.5. In addition, Meis1-deficient embryos lack well-formed capillaries, although larger blood vessels are normal. Definitive myeloerythroid lineages are present in the mutant embryos, but the total numbers of colony-forming cells are dramatically reduced. Mutant fetal liver cells also fail to radioprotect lethally irradiated animals and they compete poorly in repopulation assays even though they can repopulate all hematopoietic lineages. These and other studies showing that Meis1 is expressed at high levels in hematopoietic stem cells (HSCs) suggest that Meis1 may also be required for the proliferation/self-renewal of the HSC.
Expression of Hoxa7 and Hoxa9 is activated by proviral integration in BXH2 murine myeloid leukaemias. This result, combined with the mapping of the HOXA locus to human chromosome 7p15, suggested that one of the HOXA genes might be involved in the t(7;11)(p15;p15) translocation found in some human myeloid leukaemia patients. Here we show that in three patients with t(7;11), the chromosome rearrangement creates a genomic fusion between the HOXA9 gene and the nucleoporin gene NUP98 on chromosome 11p15. The translocation produces an invariant chimaeric NUP98/HOXA9 transcript containing the amino terminal half of NUP98 fused in frame to HOXA9. These studies identify HOXA9 as an important human myeloid leukaemia gene and suggest an important role for nucleoporins in human myeloid leukaemia given that a second nucleoporin, NUP214, has also been implicated in human myeloid leukaemia.
Bcl11a (also called Evi9) functions as a myeloid or B cell proto-oncogene in mice and humans, respectively. Here we show that Bcl11a is essential for postnatal development and normal lymphopoiesis. Bcl11a mutant embryos lack B cells and have alterations in several types of T cells. Phenotypic and expression studies show that Bcl11a functions upstream of the transcription factors Ebf1 and Pax5 in the B cell pathway. Transplantation studies show that these defects in Bcl11a mutant mice are intrinsic to fetal liver precursor cells. Mice transplanted with Bcl11a-deficient cells died from T cell leukemia derived from the host. Thus, Bcl11a may also function as a non-autonomous T cell tumor suppressor gene.
The Pbx1 and Meis1 proto-oncogenes code for divergent homeodomain proteins that are targets for oncogenic mutations in human and murine leukemias, respectively, and implicated by genetic analyses to functionally collaborate with Hox proteins during embryonic development and/or oncogenesis. Although Pbx proteins have been shown to dimerize with Hox proteins and modulate their DNA binding properties in vitro, the biochemical compositions of endogenous Pbx-containing complexes have not been determined. In the present study, we demonstrate that Pbx and Meis proteins form abundant complexes that comprise a major Pbx-containing DNA binding activity in nuclear extracts of cultured cells and mouse embryos. Pbx1 and Meis1 dimerize in solution and cooperatively bind bipartite DNA sequences consisting of directly adjacent Pbx and Meis half sites. Pbx1-Meis1 heterodimers display distinctive DNA binding specificities and cross-bind to a subset of Pbx-Hox sites, including those previously implicated as response elements for the execution of Pbx-dependent Hox programs in vivo. Chimeric oncoprotein E2a-Pbx1 is unable to bind DNA with Meis1, due to the deletion of amino-terminal Pbx1 sequences following fusion with E2a. We conclude that Meis proteins are preferred in vivo DNA binding partners for wild-type Pbx1, a relationship that is circumvented by its oncogenic counterpart E2a-Pbx1.Hox proteins make critical contributions to cell fate and segmental patterning during embryonic development (30). As targets of oncogenic mutations in human and murine leukemias, they are also implicated in cancer pathogenesis (3,4,21,34,35), which likely reflects perturbations of their roles in normal hematopoietic cell differentiation (23). In these capacities, they are presumed to function as transcription factors whose DNA binding activities are mediated through a conserved motif known as the homeodomain, which is structurally related to the bacterial helix-turn-helix motif (48). However, at a molecular level, the contributions of Hox proteins to developmental processes and disease pathogenesis are inadequately explained, given their disappointingly poor in vitro DNA binding affinities and specificities as monomeric proteins. This has led to the proposal that additional factors are required to modulate the DNA binding and transcriptional properties of Hox proteins (13), which would be consistent with models for achievement of specificity by other classes of transcriptional proteins.Genetic and biochemical studies support the argument for a role for members of the Pbx, exd, and ceh-20 subfamily (5) of divergent homeodomain proteins as potential Hox cofactors. In Drosophila melanogaster, exd is required for the execution of genetic programs that are also dependent on Hox proteins for appropriate segment-specific expression (40,45,46). A similar role for mammalian Pbx proteins is suggested by genetic analyses demonstrating that sequence elements with features of Pbx-Hox consensus sites are required for appropriate expression of murine Hoxb-1 in th...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.