Manipulation of the gut microbiota holds great promise for the treatment of inflammatory and allergic diseases. Although numerous probiotic microorganisms have been identified, there remains a compelling need to discover organisms that elicit more robust therapeutic responses, are compatible with the host, and can affect a specific arm of the host immune system in a well-controlled, physiological manner. Here we use a rational approach to isolate CD4(+)FOXP3(+) regulatory T (Treg)-cell-inducing bacterial strains from the human indigenous microbiota. Starting with a healthy human faecal sample, a sequence of selection steps was applied to obtain mice colonized with human microbiota enriched in Treg-cell-inducing species. From these mice, we isolated and selected 17 strains of bacteria on the basis of their high potency in enhancing Treg cell abundance and inducing important anti-inflammatory molecules--including interleukin-10 (IL-) and inducible T-cell co-stimulator (ICOS)--in Treg cells upon inoculation into germ-free mice. Genome sequencing revealed that the 17 strains fall within clusters IV, XIVa and XVIII of Clostridia, which lack prominent toxins and virulence factors. The 17 strains act as a community to provide bacterial antigens and a TGF-β-rich environment to help expansion and differentiation of Treg cells. Oral administration of the combination of 17 strains to adult mice attenuated disease in models of colitis and allergic diarrhoea. Use of the isolated strains may allow for tailored therapeutic manipulation of human immune disorders.
CD4(+) T cells that express the forkhead box P3 (FOXP3) transcription factor function as regulatory T (Treg) cells and hinder effective immune responses against cancer cells. Abundant Treg cell infiltration into tumors is associated with poor clinical outcomes in various types of cancers. However, the role of Treg cells is controversial in colorectal cancers (CRCs), in which FOXP3(+) T cell infiltration indicated better prognosis in some studies. Here we show that CRCs, which are commonly infiltrated by suppression-competent FOXP3(hi) Treg cells, can be classified into two types by the degree of additional infiltration of FOXP3(lo) nonsuppressive T cells. The latter, which are distinguished from FOXP3(+) Treg cells by non-expression of the naive T cell marker CD45RA and instability of FOXP3, secreted inflammatory cytokines. Indeed, CRCs with abundant infiltration of FOXP3(lo) T cells showed significantly better prognosis than those with predominantly FOXP3(hi) Treg cell infiltration. Development of such inflammatory FOXP3(lo) non-Treg cells may depend on secretion of interleukin (IL)-12 and transforming growth factor (TGF)-β by tissues and their presence was correlated with tumor invasion by intestinal bacteria, especially Fusobacterium nucleatum. Thus, functionally distinct subpopulations of tumor-infiltrating FOXP3(+) T cells contribute in opposing ways to determining CRC prognosis. Depletion of FOXP3(hi) Treg cells from tumor tissues, which would augment antitumor immunity, could thus be used as an effective treatment strategy for CRCs and other cancers, whereas strategies that locally increase the population of FOXP3(lo) non-Treg cells could be used to suppress or prevent tumor formation.
The interleukin-6 (IL-6) signal is transduced through membrane-anchored gp130, which is associated with IL-6 receptor (IL-6R) in the presence of IL-6. Soluble forms of gp130 (sgp130) with molecular weights of 90 and 110 Kd were found in human serum. In the presence of recombinant IL- 6 (rIL-6), serum sgp130 were capable of associating with serum sIL-6R. By the sandwich enzyme-linked immunosorbent assay, healthy human sera was shown to contain 390 +/- 72 ng/mL of sgp130. A mouse pro-B-cell line-derived transfectant, BAF-130, expressing human gp130 was used to examine the function of serum sgp130. When supplemented with rIL-6, human serum induced DNA synthesis in BAF-130 cells, whereas the serum deprived of sIL-6R did not. In contrast, the DNA synthesis induced in BAF-130 cells by rIL-6-supplemented serum was increased when the serum was deprived of sgp130. These results indicated that serum sgp130 could negatively regulate the IL-6 signal. Recently, gp130 has been shown to be involved in the signaling processes of oncostatin M, leukemia inhibitory factor, and ciliary neurotropic factor, in addition to those of IL-6. Recombinant sgp130 showed inhibitory effect on the biologic function of such cytokines. This work implies physiologic roles of naturally produced serum sgp130 in modulating signals through gp130.
Immunological tolerance to self requires naturally occurring regulatory T (Treg) cells. Yet how they stably control autoimmune T cells remains obscure. Here, we show that Treg cells can render self-reactive human CD8(+) T cells anergic (i.e., hypoproliferative and cytokine hypoproducing upon antigen restimulation) in vitro, likely by controlling the costimulatory function of antigen-presenting cells. Anergic T cells were naïve in phenotype, lower than activated T cells in T cell receptor affinity for cognate antigen, and expressed several coinhibitory molecules, including cytotoxic T lymphocyte-associated antigen-4 (CTLA-4). Using these criteria, we detected in healthy individuals anergic T cells reactive with a skin antigen targeted in the autoimmune disease vitiligo. Collectively, our results suggest that Treg cell-mediated induction of anergy in autoimmune T cells is important for maintaining self-tolerance.
CRP elevation is a more reliable indicator of survival after gastric cancer surgery than postoperative complication occurrence. Surgeons should minimize the postoperative inflammatory response to improve prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.