Abstract. Previously, we found that anti-DDDED antibodies strongly inhibited in vivo nuclear transport of nuclear proteins and that these antibodies recognized a protein of 69 kD (p69) from rat liver nuclear envelopes that showed specific binding activities to the nuclear location sequences (NLSs) of nucleoplasmin and SV-40 large T-antigen. Here we identified this protein as the 70-kD heat shock cognate protein (hsc70) based on its mass, isoelectric point, cellular localization, and partial amino acid sequences. Competition studies indicated that the recombinant hsc70 expressed in Escherichia coli binds to transport competent SV-40 T-antigen NLS more strongly than to the point mutated transport incompetent mutant NLS. To investigate the possible involvement of hsc70 in nuclear transport, we examined the effect of anti-hsc70 rabbit antibodies on the nuclear accumulation of karyophilic proteins. When injected into the cytoplasm of tissue culture cells, anti-hsc70 strongly inhibited the nuclear import of nucleoplasmin, SV-40 T-antigen NLS bearing BSA and histone H1. In contrast, anti-hsc70 IgG did not prevent the diffusion of lysozyme or 17.4-kD FITC-dextran into the nuclei. After injection of these antibodies, cells continued RNA synthesis and were viable. These results indicate that hsc70 interacts with NLS-containing proteins in the cytoplasm before their nuclear import.
RNA catalysis is important in the processing and translation of RNA molecules, yet the mechanisms of catalysis are still unclear in most cases. We have studied the role of nucleobase catalysis in the hairpin ribozyme, where the scissile phosphate is juxtaposed between guanine and adenine bases. We show that a modified ribozyme in which guanine 8 has been substituted by an imidazole base is active in both cleavage and ligation, with ligation rates 10-fold faster than cleavage. The rates of both reactions exhibit bell-shaped dependence on pH, with pK a values of 5.7 6 0.1 and 7.7 6 0.1 for cleavage and 6.1 6 0.3 and 6.9 6 0.3 for ligation. The data provide good evidence for general acid-base catalysis by the nucleobases.
A series of 16 compounds related to chiral 4(5)-(5-aminomethyltetrahydrofuran-2-yl)imidazoles (1) have been designed, synthesized, and examined in vitro by radioligand displacement studies and functional assays for both the human H(3)- and H(4)-receptors expressed in SK-N-MC cells. Among them, the (2S,5S)-isomer 1d of amino compounds showed approximately 300-fold higher selectivity at the H(3)-receptor than the H(4)-receptor. On the other hand, (2R,5S)- and (2R,5R)-cyanoguanidines 3b and 3c, in which the amino group of the compounds 1b and 1c was substituted by the cyanoguanidino moiety, bound to the H(4)-receptor with a pEC(50) value of 6.65 and 7.11, respectively, and had >40-fold selectivities over the H(3)-receptor. As such, 3b and 3c are the first selective H(4) receptor agonists.
We constructed a modified form of the VS ribozyme containing an imidazole ring in place of adenine at position 756. The novel ribozyme is active in both cleavage and ligation reactions. The reaction is efficient, although relatively slow. The results are consistent with a role for nucleobase catalysis in the catalytic mechanism of this ribozyme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.