Topological insulators and semimetals as well as unconventional iron-based superconductors have attracted major recent attention in condensed matter physics. Previously, however, little overlap has been identified between these two vibrant fields, even though the principal combination of topological bands and superconductivity promises exotic unprecedented avenues of superconducting states and Majorana bound states (MBSs), the central building block for topological quantum computation. Along with progressing laser-based spin-resolved and angle-resolved photoemission spectroscopy (ARPES) towards high energy and momentum resolution, we have resolved topological insulator (TI) and topological Dirac semimetal (TDS) bands near the Fermi level (E F ) in the iron-based superconductors Li(Fe,Co)As and Fe(Te,Se), respectively. The TI and TDS bands can be individually tuned to locate close to E F by carrier doping, allowing to potentially access a plethora of different superconducting topological states in the same material. Our results reveal the generic coexistence of superconductivity and multiple topological states in iron-based superconductors, rendering these materials a promising platform for high-T c topological superconductivity.High-T c iron-based superconductors feature multiple bands near E F , which enhances the difficulty in understanding the details of unconventional pairing 1-3 . It, however, also allows for a wealth of, possibly topologically non-trivial, electronic bands, of which a recent example is the TI states discovered in the ironbased superconductor Fe(Te,Se) 4 , hinting at a promising direction to realize topological superconductivity and MBSs 5-9 . In view of Fe(Te,Se), a pressing subsequent question is to which extent this marks a generic phe-nomenon in different classes of iron-based high-T c superconductors. In this work, we find that the emergence of non-trivial topological bands near the Fermi level is indeed a common feature of various iron-based superconductors. Our first-principles calculations reveal that BaFe 2 As 2 , LiFeAs and Fe(Te,Se) all exhibit band inversions along k z . To confirm these calculations, the band structures of Li(Fe,Co)As and Fe(Te,Se) were investigated by laser-based high-resolution ARPES. Firstly, we observe that TI bands reminiscent of Fe(Te,Se) exist in Li(Fe,Co)As as well, supporting the generic existence of non-trivial topology in iron-based superconductors. Secondly and more interestingly, we predict and observe TDS bands in Li(Fe,Co)As and Fe(Te,Se), which we investigate via high-resolution ARPES, spin-resolved ARPES (SARPES), and magnetoresistance (MR) measurements. Finally, we discuss the phase diagram of these topological high-T c compounds as a function of Fermi level (doping). The combination of topological states and superconductivity may produce not only surface topological superconductivity deriving from the TI edge states, but also bulk topological superconductivity from the TDS bands.Normal insulator (NI), TI, and TDS constitute topologically disti...
In this article, we give a comprehensive review of recent progress in research on symmetry-protected topological superfluids and topological crystalline superconductors, and their physical consequences such as helical and chiral Majorana fermions. We start this review article with the minimal model that captures the essence of such topological materials. The central part of this article is devoted to the superfluid 3 He, which serves as a rich repository of novel topological quantum phenomena originating from the intertwining of symmetries and topologies. In particular, it is emphasized that the quantum fluid confined to nanofabricated geometries possesses multiple superfluid phases composed of the symmetry-protected topological superfluid B-phase, the A-phase as a Weyl superfluid, the nodal planar and polar phases, and the crystalline ordered stripe phase. All these phases generate noteworthy topological phenomena, including topological phase transitions concomitant with spontaneous symmetry breaking, Majorana fermions, Weyl superfluidity, emergent supersymmetry, spontaneous edge mass and spin currents, topological Fermi arcs, and exotic quasiparticles bound to topological defects. In relation to the mass current carried by gapless edge states, we also briefly review a longstanding issue on the intrinsic angular momentum paradox in 3 He-A. Moreover, we share the current status of our knowledge on the topological aspects of unconventional superconductors, such as the heavy-fermion superconductor UPt 3 and superconducting doped topological insulators, in connection with the superfluid 3 He.In Sect. 3, we will share the topological aspect of a spinpolarized chiral p-wave superconducting state as a specific model having nontrivial w 2d ¼ Ch 1 . Topology subject to discrete symmetriesNaively, any one-dimensional closed loop S 1 cannot cover the target space S 2 . Thus, a generic 2  2 Hamiltonian in one dimension cannot provide a stable topological structure. However, discrete symmetries of H in Eq. (3) impose strong constraints on the spinorm, and thus nontrivial topological numbers can be introduced even in one dimension, as illustrated below.Particle-hole symmetry C 2 ¼ þ1 (class D)-Let us first suppose that the minimal Hamiltonian (13) holds the PHS C ¼ x K (C 2 ¼ þ1). The operation of PHS changes the spinor mðkÞ to ½Àm x ðÀkÞ; Àm y ðÀkÞ;m z ðÀkÞ. For the momentum space characterized by S 2 , there are two particle-hole invariant momenta, k ¼ 0 and jkj ¼ 1, where the infinite points are identical to a single point. At the particle-hole invariant momenta, the spinorm must point to the north or south pole on S 2 . Therefore, we have two different situations: One is that the spinorsm at k ¼ 0 and jkj ¼ 1 point in the same direction,m z ð0Þ ¼m z ð1Þ; ð26Þ Fig. 3. (Color online) Target spaces M subject to discrete symmetries T and C. Possible trajectories ofm on M with C 2 ¼ þ1 are also depicted.Fig. 24. (Color online) Low-lying quasiparticle spectra for the axisymmetric w-vortex (a) and v-vortex (b) with k z ¼ 0 and ...
We demonstrate that the three-dimensional Skyrmion, which has remained elusive so far, spontaneously appears as the ground state of SU(2) symmetric Bose-Einstein condensates coupled with a non-Abelian gauge field. The gauge field is a three-dimensional analogue of the Rashba spin-orbit coupling. Upon squashing the SO(3) symmetric gauge field to one- or two-dimensional shapes, we find that the ground state continuously undergoes a change from a three-dimensional to a one- or two-dimensional Skyrmion, which is identified by estimating winding numbers and helicity. All of the emerged Skyrmions are physically understandable with the concept of the helical modulation in a unified way. These topological objects might potentially be realizable in two-component Bose-Einstein condensates experimentally.
We investigate the topological aspect of the spin-triplet f -wave superconductor UPt3 through microscopic calculations of edge-and vortex-bound states based on the quasiclassical Eilenberger and Bogoliubov-de Gennes theories. It is shown that a gapless and linear dispersion exists at the edge of the ab-plane. This forms a Majorana valley, protected by the mirror chiral symmetry. We also demonstrate that, with increasing magnetic field, vortex-bound quasiparticles undergo a topological phase transition from topologically trivial states in the double-core vortex to zero-energy states in the normal-core vortex. As long as the d-vector is locked into the ab-plane, the mirror symmetry holds the Majorana property of the zero-energy states, and thus UPt3 preserves topological crystalline superconductivity that is robust against the crystal field and spin-orbit interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.