The addition of photo-controllable properties to tungsten trioxide (WO3) is of interest for developing practical applications of WO3 as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO3 thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W5+ ions. The thermoelectric properties (electrical conductivity (σ) and Seebeck coefficient (S)) and coloration of WO3 could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, σ increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO3 after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, σphoto) and photo-Seebeck effect (photo-Seebeck coefficient, Sphoto)) were also detected in response to visible-light irradiation of the colored WO3 thin films. Under visible-light irradiation, σphoto and the absolute value of Sphoto increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W5+ state) to the conduction band of WO3. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO3 thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.