Mesh quality strongly affects the solution accuracy in electromagnetic finite-element analysis. Hence, the realization of adequate mesh generation becomes a very important task. Several adaptive meshing methods for automatic adjustments of the mesh density in accordance with the shape and complexity of the analyzed problem have been proposed. However, the most of them are not enough robust, some are quite laborious and could not be universally used for adaptive meshing of complex analysis models. In this paper, a new adaptive mesh refinement method based on magnetic field conservation at the border between finite elements is proposed. The proposed error estimation method provides easy mesh refinements, and generates smaller element within regions with large curvature of the magnetic flux lines. The proposed adaptive mesh refinement method based on non-conforming edge finite elements, which could avoid generation of flat or ill-shaped elements, was applied to a simple magnetostatic permanent magnet model. To confirm the validity and accuracy, the obtained results were compared with those obtained by means of the Zienkiewicz-Zhu (ZZ) error estimator. The results show that the computational error using the proposed method was reduced down to 1% compared with that of the ZZ method, which yields error of 8.6%, for the same model
The visualization of magnetic flux lines is one of the most effective ways to intuitively grasp a magnetic field. The depiction of continuous and smooth magnetic flux lines according to the magnetic field is of paramount importance. Thus, it is important to adequately allocate the distribution of magnetic flux lines in the analyzed space. We have already proposed two methods of determining the allocation of magnetic flux lines in 3-D space. However, both the methods exhibited a long computation time to determine the allocation of magnetic flux lines. For solving this problem, in this paper, we propose a new improved method for the correct allocation of magnetic flux lines in the 3-D space with modest computational cost. The main advantages of this method are shorter computation time, correct allocation of the magnetic flux lines, and, especially, short computation time for the visualization of magnetic flux lines when changes in the number of depicted flux lines are requested
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.