Abscisic acid (ABA) is a phytohormone that regulates many physiological functions, such as plant growth, development and stress responses. The MAPK cascade plays an important role in ABA signal transduction. Several MAPK and MAPKK molecules are reported to function in ABA signaling; however, there have been few studies related to the identification of MAPKKK upstream of MAPKK in ABA signaling. In this study, we show that an Arabidopsis MAPKKK, MAPKKK18 functions in ABA signaling. The expression of MAPKKK18 was induced by ABA treatment. Yeast two-hybrid analysis revealed that MAPKKKK18 interacted with MKK3, which interacted with C-group MAPK, MPK1/2/7. Immunoprecipitated kinase assay showed that the 3xFlag-tagged MAPKKK18, expressed in Arabidopsis plants, was activated when treated with ABA. These results indicate the possibility that the MAPK cascade is composed of MAPKKK18, MKK3 and MPK1/2/7 in ABA signaling. The transgenic plants overexpressing MAPKKK18 (35S:MAPKKK18) and its kinase negative mutant (35S:MAPKKK18 KN) were generated, and their growth was monitored. Compared with the WT plant, 35S:MAPKKK18 and 35S:MAPKKK18 KN showed smaller and bigger phenotypes, respectively. Senescence of the rosette leaves was promoted in 35S:MAPKKK18, but suppressed in 35S:MAPKKK18 KN. Furthermore, ABA-induced leaf senescence was accelerated in 35S:MAPKKK18. These results suggest that MAPKKK18 controls the plant growth by adjusting the timing of senescence via its protein kinase activity in ABA dependent manners.
Abscisic acid (ABA) plays an important role in plant growth, development, and stress responses. ABA regulates many aspects of plant growth and development, including seed maturation, dormancy, germination, the transition from vegetative to reproductive growth, leaf senescence and responses to environmental stresses, such as drought, high salinity and cold. It is also known that mitogen-activated protein kinase (MAPK) cascades function in ABA signaling. Recently, we and another group have identified the ABA-inducible MAP3Ks MAP3K17 and MAP3K18 as the upstream MAP3Ks of MKK3, implicating the MAP3K17/18-MKK3-MPK1/2/7/14 cascade in ABA signaling. It has also been reported that overexpression of MAP3K18 in Arabidopsis causes an early leaf senescence phenotype, ABA hypersensitive stomata closing, and drought tolerance. In this study, we generated transgenic plants overexpressing MAP3K17 (35S:MAP3K17) and its kinase-inactive form (35S:MAP3K17KN). The bolting of 35S:MAP3K17 was earlier than WT, and the fresh weights of the seedlings were smaller, whereas 35S:MAP3K17KN showed the opposite phenotype. These results indicate that the transition from vegetative to reproductive growth can be regulated by overexpression of MAP3K17 and its kinase-inactive form. Moreover, 35S:MAP3K17 showed lower sensitivity to ABA during post-germinated growth, whereas 35S:MAP3K17 KN showed the opposite phenotype, suggesting the negative roles of MAP3K17 in the response to ABA. Our work provides the possibility to regulate plant growth and development by the genetic manipulation of ABA-induced MAPK cascades, leading to improved crop growth and productivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.