Plants have evolved seeds to permit the survival and dispersion of their lineages by providing nutrition for embryo growth and resistance to unfavorable environmental conditions. Seed formation is a complicated process that can be roughly divided into embryogenesis and the maturation phase, characterized by accumulation of storage compound, acquisition of desiccation tolerance, arrest of growth, and acquisition of dormancy. Concerted regulation of several signaling pathways, including hormonal and metabolic signals and gene networks, is required to accomplish seed formation. Recent studies have identified the major network of genes and hormonal signals in seed development, mainly in maturation. Gibberellin (GA) and abscisic acids (ABA) are recognized as the main hormones that antagonistically regulate seed development and germination. Especially, knowledge of the molecular mechanism of ABA regulation of seed maturation, including regulation of dormancy, accumulation of storage compounds, and desiccation tolerance, has been accumulated. However, the function of ABA and GA during embryogenesis still remains elusive. In this review, we summarize the current understanding of the sophisticated molecular networks of genes and signaling of GA and ABA in the regulation of seed development from embryogenesis to maturation.
WRINKLED1 (WRI1), an AP2 domain transcription factor, is a master regulator of oil synthesis in plant seeds. Its closely related proteins (WRIs) are also involved in regulating the synthesis of fatty acids, which play a role in producing oils, membranes, and other important components in plants. We found two WRI1 genes, OsWRI1-1 and OsWRI1-2, and two additional WRI1 homologs, OsWRI3 and OsWRI4, in the rice genome. OsWRI1 was ubiquitously expressed in rice plants, including developing seeds. However, OsWRI3 was only significantly expressed in the leaf blade and OsWRI4 was not expressed at all. OsWRI1-1 contains amino acid sequence GCL instead of VYL, which is encoded by an independent 9-bp micro-exon that is conserved in many plant species. We found that the GCL sequence was produced by an atypical splicing accompanied by skipping of the micro-exon. Furthermore, OsWRI1-1 highly activates the transcription of the promoter for the biotin carboxyl transferase 2 gene in Arabidopsis, but its activity was reduced by amino acid replacement or deletion of the GCL sequence in a transient assay using Arabidopsis cells. Our results indicated that atypical splicing produced unique WRI1 in rice plants.
INDETERMINATE DOMAIN (IDD) family proteins are plant-specific transcription factors. Some Arabidopsis IDD (AtIDD) proteins regulate the expression of SCARECROW (SCR) by interacting with GRAS family transcription factors SHORT-ROOT (SHR) and SCR, which are involved in root tissue formation. Some AtIDD proteins regulate genes involved in the synthesis (GA3ox1) or signaling (SCL3) of gibberellic acid (GA) by interacting with DELLA proteins, a subfamily of the GRAS family. We analyzed the DNA binding properties and protein–protein interactions of select AtIDD proteins. We also investigated the transcriptional activity of the combination of AtIDD and GRAS proteins (AtIDD proteins combined with SHR and SCR or with REPRESSOR of ga1-3 (RGA)) on the promoters of SCR, SCL3, and GA3ox1 by conducting a transient assay using Arabidopsis culture cells. Our results showed that the SCR promoter could be activated by the IDD and RGA complexes and that the SCL3 and GA3ox1 promoters could be activated by the IDD, SHR, and SCR complexes, indicating the possibility that these complexes regulate and consequently coordinate the expression of genes involved in GA synthesis (GA3ox1), GA signaling (SCL3), and root formation (SCR).
Seed germination, one of the most important stages in a plant’s life cycle, can be affected by abiotic stresses, such as salinity. The plant hormone abscisic acid (ABA) and high concentrations of glucose are also known to inhibit germination. In contrast, nitrate is known to stimulate germination in many plants. However, this stimulatory effect has not yet been investigated in the presence of inhibitory effects caused by abiotic stresses, ABA, and glucose. In this study, we show that nitrate can alleviate the inhibitory effects of sodium chloride (NaCl) or high concentrations of glucose on seed germination in Arabidopsis, while it was not able to promote germination that was inhibited by exogenous ABA and mannitol (an inducer of osmotic stress). An analysis of the gene expression involved in the regulation of germination showed that GA20ox1, encoding the gibberellin (GA) synthesis enzyme, SPATULA (SPT), encoding a bHLH transcription factor, and CYP707A2, encoding an ABA catabolic enzyme, were significantly upregulated by the addition of KNO3 in the presence of NaCl or glucose. Our results suggest the possibility that these genes are involved in the nitrate-mediated control of seed germination in the presence of NaCl or glucose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.