Phosphoenolpyruvate carboxylase (PEPC) is a key enzyme of primary metabolism in bacteria, algae, and vascular plants, and is believed to be cytosolic. Here we show that rice (Oryza sativa L.) has a plant-type PEPC, Osppc4, that is targeted to the chloroplast. Osppc4 was expressed in all organs tested and showed high expression in the leaves. Its expression in the leaves was confined to mesophyll cells, and Osppc4 accounted for approximately one-third of total PEPC protein in the leaf blade. Recombinant Osppc4 was active in the PEPC reaction, showing V max comparable to cytosolic isozymes. Knockdown of Osppc4 expression by the RNAi technique resulted in stunting at the vegetative stage, which was much more marked when rice plants were grown with ammonium than with nitrate as the nitrogen source. Comparison of leaf metabolomes of ammonium-grown plants suggested that the knockdown suppressed ammonium assimilation and subsequent amino acid synthesis by reducing levels of organic acids, which are carbon skeleton donors for these processes. We also identified the chloroplastic PEPC gene in other Oryza species, all of which are adapted to waterlogged soil where the major nitrogen source is ammonium. This suggests that, in addition to glycolysis, the genus Oryza has a unique route to provide organic acids for ammonium assimilation that involves a chloroplastic PEPC, and that this route is crucial for growth with ammonium. This work provides evidence for diversity of primary ammonium assimilation in the leaves of vascular plants.amino acid synthesis | glycolysis | nitrogen assimilation | organic acid synthesis | Oryza
In rice, genotypic differences in phosphorus (P) uptake from P-deficient soils are generally proportional to differences in root biomass or surface area (RSA). It is not known to what extent genotypic variation for root efficiency (RE) exists or contributes to P uptake. We evaluated 196 rice accessions under P deficiency and detected wide variation for root biomass which was significantly associated with plant performance. However, at a given root size, up to 3-fold variation in total biomass existed, indicating that genotypes differed in how efficiently their root system acquired P to support overall plant growth. This was subsequently confirmed, identifying a traditional genotype, DJ123, with 2.5-fold higher RE (32.5 µg P cm(-2) RSA) compared with the popular modern cultivar IR64. A P depletion experiment indicated that RE could not be explained by P uptake kinetics since even IR64 depleted P to <20nM. A genome-wide association study identified loci associated with RE, and in most cases the more common marker type improved RE. This may indicate that modern rice cultivars lost the ability for efficient P uptake, possibly because they were selected under highly fertile conditions. One association detected on chromosome 11 that was present in a small group of seven accessions (including DJ123) improved RE above the level already present in many traditional rice accessions. This subspecies is known to harbor genes enhancing stress tolerance, and DJ123 may thus serve as a donor of RE traits and genes that modern cultivars seem to have lost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.