BackgroundPhoto(chemo)therapy is widely used to treat psoriasis, the pathogenesis of which might be caused by an imbalance of Th17 cells/regulatory T cells (Treg). In the present study, we evaluated the effects of photo(chemo)therapy on the Th17/Treg balance and Treg function.MethodsPeripheral blood was obtained from psoriasis patients treated with bath-psoralen ultraviolet A (UVA, n = 50) or narrowband ultraviolet B (UVB, n = 18), and age-matched healthy volunteers (n = 20). CD3+CD4+IL-17A+ or CD4+CD25+Foxp3+cells were analyzed to estimate Th17 or Treg number by fluorescence–activated cell sorting. Moreover, CD4+ CD25− T cells from patients treated with PUVA(n = 14) were incubated in CFSE and activated with or without CD4+ CD25+T cells, and the suppressive function of CD4+ CD25+T cells were analyzed.ResultsPhoto(chemo)therapy significantly reduced Th17 levels from 5.66±3.15% to 2.96±2.89% in patients with increased Th17 (Th17/CD4>3.01% [mean+SD of controls]). In contrast, photo(chemo)therapy significantly increased Treg levels from 2.77±0.75 to 3.40±1.88% in patients with less than 4.07% Treg level, defined as the mean of controls. Furthermore, while Treg suppressed the CD4+CD25− T cell proliferation to a greater extent in controls (Treg Functional Ratio 94.4±4.28%) than in patients (70.3±25.1%), PUVA significantly increased Treg Functional Ratio to 88.1±6.47%. Th17 levels in severe patients (>30 PASI) were significantly higher as compared to controls. Th17 levels that were left after treatment in the patients not achieving PASI 50 (3.78±4.18%) were significantly higher than those in the patients achieving PASI 75 (1.83±1.87%). Treg levels in patients achieving PASI 90 (4.89±1.70%) were significantly higher than those in the patients not achieving PASI 90 (3.90±1.66%). Treg levels prior to treatment with Th17 high decreased group (5.16±2.20%) was significantly higher than that with Th17 high increased group (3.33±1.39%).ConclusionThese findings indicate that Treg is dysfunctional in psoriasis patients, and photochemotherapy restores those dysfunctional Treg. Photo(chemo)therapy resolved the Th17/Treg imbalance in patients with psoriasis.
It is widely recognized that tobacco smoke causes skin pigmentation. No studies, however, have directly evaluated the mechanisms of the changes in smoker's skin pigmentation. In this study, when cultured with water-soluble tobacco smoke extract, the human epidermal melanocytes grew to a large size and produced more melanins. We evaluated melanocyte activation by quantifying microphthalmia-associated transcription factor (MITF) expression by real-time polymerase chain reaction. MITF expression was significantly and dose-dependently increased by exposure to tobacco smoke extract. The Wnt/b-catenin signalling pathway seemed to mediate the tobacco smoke extract-induced melanocyte activation. Immunocytochemical studies revealed that the activated melanocytes actively expressed aryl hydrocarbon receptors (AhR) around the nuclear membrane. The tobacco smoke extract-induced MITF activation was inhibited by RNA silencing of the AhR. This study provides the evidence that tobacco smoke enhances pigmentation in vitro and that the increase in pigmentation may involve b-catenin-and AhR-mediated mechanisms inside human melanocytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.