Researches on sequential vocalization often require analysis of vocalizations in long continuous sounds. In such studies as developmental ones or studies across generations in which days or months of vocalizations must be analyzed, methods for automatic recognition would be strongly desired. Although methods for automatic speech recognition for application purposes have been intensively studied, blindly applying them for biological purposes may not be an optimal solution. This is because, unlike human speech recognition, analysis of sequential vocalizations often requires accurate extraction of timing information. In the present study we propose automated systems suitable for recognizing birdsong, one of the most intensively investigated sequential vocalizations, focusing on the three properties of the birdsong. First, a song is a sequence of vocal elements, called notes, which can be grouped into categories. Second, temporal structure of birdsong is precisely controlled, meaning that temporal information is important in song analysis. Finally, notes are produced according to certain probabilistic rules, which may facilitate the accurate song recognition. We divided the procedure of song recognition into three sub-steps: local classification, boundary detection, and global sequencing, each of which corresponds to each of the three properties of birdsong. We compared the performances of several different ways to arrange these three steps. As results, we demonstrated a hybrid model of a deep convolutional neural network and a hidden Markov model was effective. We propose suitable arrangements of methods according to whether accurate boundary detection is needed. Also we designed the new measure to jointly evaluate the accuracy of note classification and boundary detection. Our methods should be applicable, with small modification and tuning, to the songs in other species that hold the three properties of the sequential vocalization.
A dendritic spine is a very small structure (∼0.1 µm3) of a neuron that processes input timing information. Why are spines so small? Here, we provide functional reasons; the size of spines is optimal for information coding. Spines code input timing information by the probability of Ca2+ increases, which makes robust and sensitive information coding possible. We created a stochastic simulation model of input timing-dependent Ca2+ increases in a cerebellar Purkinje cell's spine. Spines used probability coding of Ca2+ increases rather than amplitude coding for input timing detection via stochastic facilitation by utilizing the small number of molecules in a spine volume, where information per volume appeared optimal. Probability coding of Ca2+ increases in a spine volume was more robust against input fluctuation and more sensitive to input numbers than amplitude coding of Ca2+ increases in a cell volume. Thus, stochasticity is a strategy by which neurons robustly and sensitively code information.
The auditory system converts the physical properties of a sound waveform to neural activities and processes them for recognition. During the process, the tuning to amplitude modulation (AM) is successively transformed by a cascade of brain regions. To test the functional significance of the AM tuning, we conducted single-unit recording in a deep neural network (DNN) trained for natural sound recognition. We calculated the AM representation in the DNN and quantitatively compared it with those reported in previous neurophysiological studies. We found that an auditory-system-like AM tuning emerges in the optimized DNN. Better-recognizing models showed greater similarity to the auditory system. We isolated the factors forming the AM representation in the different brain regions. Because the model was not designed to reproduce any anatomical or physiological properties of the auditory system other than the cascading architecture, the observed similarity suggests that the AM tuning in the auditory system might also be an emergent property for natural sound recognition during evolution and development. SIGNIFICANCE STATEMENT This study suggests that neural tuning to amplitude modulation may be a consequence of the auditory system evolving for natural sound recognition. We modeled the function of the entire auditory system; that is, recognizing sounds from raw waveforms with as few anatomical or physiological assumptions as possible. We analyzed the model using single-unit recording, which enabled a fair comparison with neurophysiological data with as few methodological biases as possible. Interestingly, our results imply that frequency decomposition in the inner ear might not be necessary for processing amplitude modulation. This implication could not have been obtained if we had used a model that assumes frequency decomposition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.