The aim of the present study was to estimate the time course change in cytochrome P450 3A (CYP3A) activity during repeated doses of erythromycin. Twelve healthy male volunteers participated in this randomized, 4 x 4 Latin square design study. The pharmacokinetics of a single oral dose of midazolam, a probe for CYP3A activity, were assessed in 4 conditions: (1) midazolam (5 mg) without erythromycin (EM0), (2) erythromycin 2 days + midazolam (2.5 mg) (EM2), (3) erythromycin 4 days + midazolam (2.5 mg) (EM4), and (4) erythromycin 7 days + midazolam (2.5 mg) (EM7). The dose of erythromycin was 800 mg/d. Erythromycin produced a 2.3-, 3.4-, and 3.4-fold increase in dose-corrected area under the curve of midazolam for EM2, EM4, and EM7, respectively, as compared with EM0 (P <.05/6). A significant prolongation of terminal half-life was observed in EM4 and EM7. The relationship between the duration of erythromycin treatment and total clearance of midazolam indicated that a plateau level of CYP3A inhibition can be achieved by 4 days or more of erythromycin treatment. The repeated treatment with erythromycin yields CYP3A inhibition in a duration-dependent manner. A 4-day course of erythromycin treatment produces 90% or more of the maximal inhibition of CYP3A in humans.
We present a search for possible spin dependent interactions of the neutron with matter through exchange of spin 1 bosons with axial vector couplings as envisioned in possible extensions of the Standard Model. This was sought using a slow neutron polarimeter that passed transversely polarized slow neutrons by unpolarized slabs of material arranged so that interactions would tilt the plane of polarization and develop a component along the neutron momentum. The result for the rotation angle, φ = [2.8 ± 4.6(stat.) ± 4.0(sys.)] × 10 −5 rad/m is consistent with zero. This result improves the upper bounds on the neutron-matter coupling g 2 A by about three orders of magnitude for force ranges in the mm -µm regime.in the 1 meV to 1 eV range and with very weak couplings to matter has begun to attract renewed scientific attention. Particles which might act as the mediators are sometimes referred to generically as WISPs (Weakly-Interacting sub-eV Particles) [1,2] in recent theoretical literature. Many theories beyond the Standard Model, including string theories, possess extended symmetries which, when broken at a high energy scale, lead to weakly-coupled light
Angular distribution of individual γ-rays, emitted from a neutron-induced compound nuclear state via radiative capture reaction of 139 La(n,γ) has been studied as a function of incident neutron energy in the epithermal region by using germanium detectors.An asymmetry ALH was defined as (NL − NH)/(NL + NH), where NL and NH are integrals of low and high energy region of a neutron resonance respectively, and we found that ALH has the angular dependence of (A cos θγ + B), where θγ is emitted angle of γ-rays, with A = −0.3881 ± 0.0236 and B = −0.0747 ± 0.0105 in 0.74 eV p-wave resonance.This angular distribution was analyzed within the framework of interference between s-and p-wave amplitudes in the entrance channel to the compound nuclear state, and it is interpreted as the value of the partial p-wave neutron width corresponding to the total angular momentum of the incident neutron combined with the weak matrix element, in the context of the mechanism of enhanced parity-violating effects. Additionally we used the result to quantify the possible enhancement of the breaking of the time-reversal invariance in the vicinity of the p-wave resonance.
Neutron polarization analysis (NPA) for small-angle neutron scattering (SANS) experiments using a pulsed neutron source was successfully achieved by applying a 3He spin filter as a spin analyzer for the neutrons scattered from the sample. The cell of the 3He spin filter gives a weak small-angle scattering intensity (background) and covers a sufficient solid angle for performing SANS experiments. The relaxation time of the 3He polarization is sufficient for continuous use for approximately 2 days, thus reaching the typical duration required for a complete set of SANS experiments. Although accurate evaluation of the incoherent neutron scattering, which is predominantly attributable to the extremely large incoherent scattering cross section of hydrogen atoms in samples, is difficult using calculations based on the sample elemental composition, the developed NPA approach with consideration of the influence of multiple neutron scattering enabled reliable decomposition of the SANS intensity distribution into the coherent and incoherent scattering components. To date, NPA has not been well established as a standard technique for SANS experiments at pulsed neutron sources such as the Japan Proton Accelerator Research Complex (J-PARC) and the US Spallation Neutron Source. It is anticipated that this work will contribute significantly to the accurate determination of the coherent neutron scattering component for scatterers in various types of organic sample systems in SANS experiments at J-PARC, particularly for systems involving competition between the coherent and incoherent scattering intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.