Recent studies in deep learning-based speech separation have proven the superiority of time-domain approaches to conventional timefrequency-based methods. Unlike the time-frequency domain approaches, the time-domain separation systems often receive input sequences consisting of a huge number of time steps, which introduces challenges for modeling extremely long sequences. Conventional recurrent neural networks (RNNs) are not effective for modeling such long sequences due to optimization difficulties, while one-dimensional convolutional neural networks (1-D CNNs) cannot perform utterance-level sequence modeling when its receptive field is smaller than the sequence length. In this paper, we propose dual-path recurrent neural network (DPRNN), a simple yet effective method for organizing RNN layers in a deep structure to model extremely long sequences. DPRNN splits the long sequential input into smaller chunks and applies intra-and inter-chunk operations iteratively, where the input length can be made proportional to the square root of the original sequence length in each operation. Experiments show that by replacing 1-D CNN with DPRNN and apply sample-level modeling in the time-domain audio separation network (TasNet), a new state-of-the-art performance on WSJ0-2mix is achieved with a 20 times smaller model than the previous best system.
Recently, substantial progress has been made in the field of reverberant speech signal processing, including both single-and multichannel de-reverberation techniques, and automatic speech recognition (ASR) techniques robust to reverberation. To evaluate state-ofthe-art algorithms and obtain new insights regarding potential future research directions, we propose a common evaluation framework including datasets, tasks, and evaluation metrics for both speech enhancement and ASR techniques. The proposed framework will be used as a common basis for the REVERB (REverberant Voice Enhancement and Recognition Benchmark) challenge. This paper describes the rationale behind the challenge, and provides a detailed description of the evaluation framework and benchmark results.
In recent years, substantial progress has been made in the field of reverberant speech signal processing, including both single-and multichannel dereverberation techniques and automatic speech recognition (ASR) techniques that are robust to reverberation. In this paper, we describe the REVERB challenge, which is an evaluation campaign that was designed to evaluate such speech enhancement (SE) and ASR techniques to reveal the state-of-the-art techniques and obtain new insights regarding potential future research directions. Even though most existing benchmark tasks and challenges for distant speech processing focus on the noise robustness issue and sometimes only on a single-channel scenario, a particular novelty of the REVERB challenge is that it is carefully designed to test robustness against reverberation, based on both real, single-channel, and multichannel recordings. This challenge attracted 27 papers, which represent 25 systems specifically designed for SE purposes and 49 systems specifically designed for ASR purposes. This paper describes the problems dealt within the challenge, provides an overview of the submitted systems, and scrutinizes them to clarify what current processing strategies appear effective in reverberant speech processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.