The ongoing demands for increased storage capacity flash memory in 2D-NAND structures resulted in their replacement by more advanced 3D-NAND structures, with the memory cells made of multiple, vertically stacked silicon oxide/silicon nitride layers. A critical step is selectively etching the silicon nitride films involving a wet etch technique using concentrated phosphoric acid at high temperatures. Concentrated phosphoric acid solutions demonstrate unique behaviors and have particularly high electrical conductivity, but the etching mechanism remains poorly understood. This study investigates the fundamental role of phosphoric acid in the silicon nitride etching and proposes complex active species for the silicon nitride surface protonation and hydroxylation. Characterization methods include 31P-NMR, XPS, FTIR, conductometry, viscometry and ellipsometry. We conclude that the unique performance of concentrated phosphoric acid as silicon nitride etchant results from an anomalously fast proton transport via the Grotthuss diffusion mechanism based on an intramolecular proton transfer driven by easily polarizable, hydrogen bond rearrangements between dissociated molecules as dimers, trimers and triple ions. By contrast, dilute phosphoric acid solutions and other strong protic acids (methanesulfonic acid, sulfuric acid, nitric acid), at both high and low concentrations exhibit protonic conductivity based on molecular diffusion of the H3O+/H2O/anions as separate entities (classical vehicle mechanism).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.