BackgroundArginine (ARG) and nitric oxide maintain the mucosal integrity of the intestine in various intestinal disorders. In the present study, we evaluated the effects of oral ARG supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX)-induced intestinal damage in a rat.MethodsMale rats were divided into four experimental groups: Control rats, CONTR-ARG rats, were treated with oral ARG given in drinking water 72 hours before and 72 hours following vehicle injection, MTX rats were treated with a single dose of methotrexate, and MTX-ARG rats were treated with oral ARG following injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. RT-PCR was used to determine bax and bcl-2 mRNA expression.ResultsMTX-ARG rats demonstrated greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in jejunum and ileum and crypt depth in ileum, compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-ARG rats (vs MTX) was accompanied by decreased bax mRNA and protein expression and increased bcl-2 protein levels.ConclusionsTreatment with oral ARG prevents mucosal injury and improves intestinal recovery following MTX- injury in the rat.
Growing evidence suggests that n-3 PUFA and their specific lipid mediators can reduce the activity of inflammatory processes. In the present study, we evaluated the effects of oral n-3 PUFA supplementation on intestinal structural changes, enterocyte proliferation and apoptosis during methotrexate (MTX)-induced intestinal damage in the rat. A total of thirty-two male rats were divided into four experimental groups: control (CONTR) rats; CONTR-n-3 PUFA rats treated with oral administration of n-3 PUFA at a dose of 300 mg/kg once per d 72 h before and 72 h following vehicle injection; MTX rats treated with a single dose of MTX; MTX-n-3 PUFA rats treated with oral n-3 PUFA following the injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis determined 72 h following MTX injection. Real-time PCR was used to determine B-cell lymphoma 2 (Bcl2)-associated X protein (Bax) and Bcl2 mRNA expression. Western blotting was used to determine phosphorylated extracellular signal-related kinase, b-catenin, Bax and Bcl2 protein levels. MTX-n-3 PUFA rats demonstrated a greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in the jejunum and ileum and crypt depth in the ileum, compared with MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-n-3 PUFA rats (v. MTX) was accompanied by decreased Bax mRNA and protein expression and increased Bcl2 mRNA levels. Thus, the treatment with oral n-3 PUFA prevented mucosal injury and improved intestinal recovery following MTX-injury in rats.
Background: The aim of this study was to examine the anti-inflammatory and anti-apoptotic patterns of omega-3 polyunsaturated fatty acids (n-3 PUFAs) during methotrexate (MTX) induced intestinal damage in cell culture and in a rat model. Methods: Non-treated and treated with MTX HT 29 and HCT116cells were exposed to increasing doses of n-3 PUFAs and cell viability was evaluated using PrestoBlue® assay. Male Sprague-Dawley rats were divided into 4 experimental groups: Control rats, CONTR+n-3 PUFA rats that were treated with oral n-3 PUFA, MTX rats were treated with MTX given IP, and MTX+n-3 PUFA rats were treated with oral n-3 PUFA before and following injection of MTX. Intestinal mucosal parameters and mucosal inflammation, enterocyte proliferation and apoptosis, TNF-α in mucosal tissue and plasma (ELISA), NF-κB, COX-2, TNF-α, Fas, FasL, Fadd, Bid, Bax and Bcl-2gene and protein levels were determined 72 h following MTX injection. Results: Exposure of HT 29 and HCT116cells to n-3 PUFA attenuated inhibiting effects of MTX on cell viability. MTX-n-3 PUFA rats demonstrated a lower intestinal injury score and enhanced intestinal repair. A significant decrease in enterocyte apoptosis in MTX+n-3 PUFA rats was accompanied by decreased TNF-α, FAS, FasL, FADD and BID mRNA levels. Decreased NF-κB, COX-2 and TNF-α levels in mucosa was accompanied by a decreased number of IELs and macrophages. Conclusions: n-3 PUFAs inhibit NF-κB/COX-2 induced production of pro-inflammatory cytokines and inhibit cell apoptosis mainly by extrinsic pathway in rats with MTX-induced intestinal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.