Abstract. We describe a method for synthesizing reasonable underapproximations to weakest preconditions for termination-a long-standing open problem. The paper provides experimental evidence to demonstrate the usefulness of the new procedure.
In this paper we address the problem of shape analysis for concurrent programs. We present new algorithms, based on abstract interpretation, for automatically verifying properties of programs with an unbounded number of threads manipulating an unbounded shared heap. Our algorithms are based on a new abstract domain whose elements represent thread-quantified invariants: i.e., invariants satisfied by all threads. We exploit existing abstractions to represent the invariants. Thus, our technique lifts existing abstractions by wrapping universal quantification around elements of the base abstract domain. Such abstractions are effective because they are thread modular: e.g., they can capture correlations between the local variables of the same thread as well as correlations between the local variables of a thread and global variables, but forget correlations between the states of distinct threads. (The exact nature of the abstraction, of course, depends on the base abstraction lifted in this style.) We present techniques for computing sound transformers for the new abstraction by using transformers of the base abstract domain. We illustrate our technique in this paper by instantiating it to the Boolean Heap abstraction, producing a Quantified Boolean Heap abstraction. We have implemented an instantiation of our technique with Canonical Abstraction as the base abstraction and used it to successfully verify linearizability of data-structures in the presence of an unbounded number of threads.
We study how program analysis can be used to:• Automatically prove partial correctness of correct programs. • Discover, locate, and diagnose bugs in incorrect programs. Specifically, we present an algorithm that analyzes sorting programs that manipulate linked lists. A prototype of the algorithm has been implemented.We show that the algorithm is sufficiently precise to discover that (correct versions) of bubble-sort and insertion-sort procedures do, in fact, produce correctly sorted lists as outputs, and that the invariant "is-sorted" is maintained by listmanipulation operations such as element-insertion, elementdeletion, and even destructive list reversal and merging of two sorted lists. When we run the algorithm on erroneous versions of bubble-sort and insertion-sort procedures, it is able to discover and sometimes even locate and diagnose the error.
TVLA is a parametric framework for shape analysis that can be easily instantiated to create different kinds of analyzers for checking properties of programs that use linked data structures. We report on dramatic improvements in TVLA's performance, which make the cost of parametric shape analysis comparable to that of the most efficient specialized shape-analysis tools (which restrict the class of data structures and programs analyzed) without sacrificing TVLA's parametricity. The improvements were obtained by employing well-known techniques from the database community to reduce the cost of extracting information from shape descriptors and performing abstract interpretation of program statements and conditions. Compared to the prior version of TVLA, we obtained as much as 50-fold speedup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.