BackgroundDiscovery that the transcriptional output of the human genome is far more complex than predicted by the current set of protein-coding annotations and that most RNAs produced do not appear to encode proteins has transformed our understanding of genome complexity and suggests new paradigms of genome regulation. However, the fraction of all cellular RNA whose function we do not understand and the fraction of the genome that is utilized to produce that RNA remain controversial. This is not simply a bookkeeping issue because the degree to which this un-annotated transcription is present has important implications with respect to its biologic function and to the general architecture of genome regulation. For example, efforts to elucidate how non-coding RNAs (ncRNAs) regulate genome function will be compromised if that class of RNAs is dismissed as simply 'transcriptional noise'.ResultsWe show that the relative mass of RNA whose function and/or structure we do not understand (the so called 'dark matter' RNAs), as a proportion of all non-ribosomal, non-mitochondrial human RNA (mt-RNA), can be greater than that of protein-encoding transcripts. This observation is obscured in studies that focus only on polyA-selected RNA, a method that enriches for protein coding RNAs and at the same time discards the vast majority of RNA prior to analysis. We further show the presence of a large number of very long, abundantly-transcribed regions (100's of kb) in intergenic space and further show that expression of these regions is associated with neoplastic transformation. These overlap some regions found previously in normal human embryonic tissues and raises an interesting hypothesis as to the function of these ncRNAs in both early development and neoplastic transformation.ConclusionsWe conclude that 'dark matter' RNA can constitute the majority of non-ribosomal, non-mitochondrial-RNA and a significant fraction arises from numerous very long, intergenic transcribed regions that could be involved in neoplastic transformation.
Thiamine-responsive megaloblastic anaemia (TRMA), also known as Rogers syndrome, is an early onset, autosomal recessive disorder defined by the occurrence of megaloblastic anaemia, diabetes mellitus and sensorineural deafness, responding in varying degrees to thiamine treatment (MIM 249270). We have previously narrowed the TRMA locus from a 16-cM to a 4-cM interval on chromosomal region 1q23.3 (refs 3,4) and this region has been further refined to a 1.4-cM interval. Previous studies have suggested that deficiency in a high-affinity thiamine transporter may cause this disorder. Here we identify the TRMA gene by positional cloning. We assembled a P1-derived artificial chromosome (PAC) contig spanning the TRMA candidate region. This clarified the order of genetic markers across the TRMA locus, provided 9 new polymorphic markers and narrowed the locus to an approximately 400-kb region. Mutations in a new gene, SLC19A2, encoding a putative transmembrane protein homologous to the reduced folate carrier proteins, were found in all affected individuals in six TRMA families, suggesting that a defective thiamine transporter protein (THTR-1) may underlie the TRMA syndrome.
For clarity, the authors are updating Figure 1, the flow chart for this study, to better illustrate the excluded samples and criteria for exclusion. The HTML and PDF versions of the figure and its legend have been updated.
We present single-molecule sequencing digital gene expression (smsDGE), a high-throughput, amplification-free method for accurate quantification of the full range of cellular polyadenylated RNA transcripts using a Helicos Genetic Analysis system. smsDGE involves a reverse-transcription and polyA-tailing sample preparation procedure followed by sequencing that generates a single read per transcript. We applied smsDGE to the transcriptome of Saccharomyces cerevisiae strain DBY746, using 6 of the available 50 channels in a single sequencing run, yielding on average 12 million aligned reads per channel. Using spiked-in RNA, accurate quantitative measurements were obtained over four orders of magnitude. High correlation was demonstrated across independent flow-cell channels, instrument runs and sample preparations. Transcript counting in smsDGE is highly efficient due to the representation of each transcript molecule by a single read. This efficiency, coupled with the high throughput enabled by the single-molecule sequencing platform, provides an alternative method for expression profiling.
Background: The significant risks posed to mothers and fetuses by COVID-19 in pregnancy have sparked a worldwide debate surrounding the pros and cons of antenatal SARS-CoV-2 inoculation, as we lack sufficient evidence regarding vaccine effectiveness in pregnant women and their offspring. We aimed to provide substantial evidence for the effect of BNT162b2 mRNA vaccine versus native infection on maternal humoral, as well as transplacentally acquired fetal immune response, potentially providing newborn protection.Methods: A multicenter study where parturients presenting for delivery were recruited at 8 medical centers across Israel and assigned to three study groups: vaccinated (n=86); PCR-confirmed SARS-CoV-2 infected during pregnancy (n=65), and unvaccinated non-infected controls (n=62).Maternal and fetal blood samples were collected from parturients prior to delivery and from the umbilical cord following delivery, respectively. Sera IgG and IgM titers were measured using Milliplex MAP SARS-CoV-2 Antigen Panel (for S1, S2, RBD and N).Results: BNT162b2 mRNA vaccine elicits strong maternal humoral IgG response (Anti-S and RBD) that crosses the placenta barrier and approaches maternal titers in the fetus within 15 days following the first dose. Maternal to neonatal anti-COVID-19 antibodies ratio did not differ when comparing sensitization (vaccine vs. infection). IgG transfer ratio at birth was significantly lower for third-trimester as compared to second-trimester infection. Lastly, fetal IgM response was detected in 5 neonates, all in the infected group. Conclusions: Antenatal BNT162b2 mRNA vaccination induces a robust maternal humoral response that effectively transfers to the fetus, supporting the role of vaccination during pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.