During the evolutionary progression of pancreatic ductal adenocarcinoma (PDAC), heterogeneous subclonal populations emerge that drive primary tumor growth, regional spread, distant metastasis, and patient death1–3. However, the genetics of metastases largely reflects that of the primary tumor in untreated patients, and PDAC driver mutations are shared by all subclones1. This raises the possibility than an epigenetic process might operate during metastasis. Here we detected striking epigenetic reprogramming of global chromatin modifications during the natural evolutionary history of distant metastasis. Genome-wide mapping revealed that global changes were targeted to thousands of large chromatin domains across the genome that collectively specified malignant traits, including euchromatin and large organized chromatin K9-modified (LOCK) heterochromatin. Remarkably, distant metastases co-evolved a dependence on the oxidative branch of the pentose phosphate pathway (oxPPP), and oxPPP inhibition selectively reversed malignant chromatin and expression states and blocked tumorigenicity. This suggests a model whereby linked metabolic-epigenetic programs are selected for enhanced tumorigenic fitness during the evolution of distant metastasis.
DNA methylation at the 5-position of cytosine (5mC) is an epigenetic modification that regulates gene expression and cellular plasticity in development and disease. The ten-eleven translocation (TET) gene family oxidizes 5mC to 5-hydroxymethylcytosine (5hmC), providing an active mechanism for DNA demethylation, and it may also provide its own regulatory function. Here we applied oxidative bisulfite sequencing to generate whole-genome DNA methylation and hydroxymethylation maps at single-base resolution in human normal liver and lung as well as paired tumor tissues. We found that 5hmC is significantly enriched in CpG island (CGI) shores while depleted in CGIs themselves, especially in active genes, which exhibit a bimodal distribution of 5hmC around CGI that corresponds to H3K4me1 modifications. Hydroxymethylation on promoters, gene bodies, and transcription termination regions (TTRs) showed strong positive correlation with gene expression within and across tissues, suggesting that 5hmC is a marker of active genes and could play a role in gene expression mediated by DNA demethylation. Comparative analysis of methylomes and hydroxymethylomes revealed that 5hmC is significantly enriched in both tissue-specific DMRs (t-DMRs) and cancer-specific DMRs (c-DMRs), and 5hmC is negatively correlated with methylation changes, especially in non-CGI-associated DMRs. These findings revealed novel reciprocity between epigenetic markers at CGI shores corresponding to differential gene expression in normal tissues and matching tumors. Overall, our study provided a comprehensive analysis of the interplay between the methylome, hydroxymethylome, and histone modifications during tumorigenesis.
hSETD1A is a member of the trithorax (TrxG) family of histone methyltransferases (HMT) that methylate H3K4 at promoters of active genes. Although misregulation of mixed lineage leukemia (MLL) family proteins has been associated with acute leukemia, the role of hSETD1A in cancer remains unknown. In this study, we report that hSETD1A and its associated H3K4me3 are upregulated in human colorectal cancer cells and patient samples. Depletion of hSETD1A inhibits colorectal cancer cell growth, colony formation, and tumor engraftment. Genome-wide expression profiling of colorectal cancer cells reveals that approximately 50% of Wnt/β-catenin target genes are affected by the hSETD1A knockdown. We further demonstrate that hSETD1A is recruited to promoters of those Wnt signaling target genes through its interaction with β-catenin, a master regulator of the Wnt signaling pathway. The recruitment of the hSETD1A HMT complex confers promoter-associated H3K4me3 that leads to assembly of transcription preinitiation complex and transcriptional activation. Furthermore, the expression levels of hSETD1A are positively correlated with H3K4me3 enrichment at the promoters of Wnt/β-catenin target genes and the aberrant activation of these genes in human colorectal cancer. These results provide new biologic and mechanistic insights into the cooperative role of hSETD1A and β-catenin in regulation of Wnt target genes as well as in colorectal cancer cell growth in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.