We present an image segmentation method that iteratively evolves a polygon. At each iteration, the vertices of the polygon are displaced based on the local value of a 2D shift map that is inferred from the input image via an encoder-decoder architecture. The main training loss that is used is the difference between the polygon shape and the ground truth segmentation mask. The network employs a neural renderer to create the polygon from its vertices, making the process fully differentiable. We demonstrate that our method outperforms the state of the art segmentation networks and deep active contour solutions in a variety of benchmarks, including medical imaging and aerial images. Our code is available at https://github.com/shirgur/ACDRNet.
In the weakly supervised localization setting, supervision is given as an image-level label. We propose to employ an image classifier f and to train a generative network g that outputs, given the input image, a per-pixel weight map that indicates the location of the object within the image. Network g is trained by minimizing the discrepancy between the output of the classifier f on the original image and its output given the same image weighted by the output of g. The scheme requires a regularization term that ensures that g does not provide a uniform weight, and an early stopping criterion in order to prevent g from over-segmenting the image. Our results indicate that the method outperforms existing localization methods by a sizable margin on the challenging fine-grained classification datasets, as well as a generic image recognition dataset. Additionally, the obtained weight map is also state-of-the-art in weakly supervised segmentation in fine-grained categorization datasets.
Given an input image, and nothing else, our method returns the bounding boxes of objects in the image and phrases that describe the objects. This is achieved within an open world paradigm, in which the objects in the input image may not have been encountered during the training of the localization mechanism. Moreover, training takes place in a weakly supervised setting, where no bounding boxes are provided. To achieve this, our method combines two pre-trained networks: the CLIP image-to-text matching score and the BLIP image captioning tool. Training takes place on COCO images and their captions and is based on CLIP. Then, during inference, BLIP is used to generate a hypothesis regarding various regions of the current image. Our work generalizes weakly supervised segmentation and phrase grounding and is shown empirically to outperform the state of the art in both domains. It also shows very convincing results in the novel task of weakly-supervised open-world purely visual phrase-grounding presented in our work. For example, on the datasets used for benchmarking phrasegrounding, our method results in a very modest degradation in comparison to methods that employ human captions as an additional input. Our code is available at https://github.com/talshaharabany/what-is-where-by-looking and a live demo can be found at https://replicate.com/talshaharabany/ what-is-where-by-looking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.