This paper studies the interplay between social distancing and the spread of the COVID-19 disease—a global pandemic that has affected most of the world’s population. Our goals are to (1) to observe the correlation between the strictness of social distancing policies and the spread of disease and (2) to determine the optimal adoption level of social distancing policies. The earliest instances of the virus were found in China, and the virus has reached the United States with devastating consequences. Other countries severely affected by the pandemic are Brazil, Russia, the United Kingdom, Spain, India, Italy, and France. Although it is impossible to stop it, it is possible to slow down its spread to reduce its impact on the society and economy. Governments around the world have deployed various policies to reduce the virus spread in response to the pandemic. To assess the effectiveness of these policies, the system’s dynamics of the society needs to be analyzed, which is generally not possible with mathematical linear equations or Monte Carlo methods because human society is a complex adaptive system with continuous feedback loops. Because of the challenges with the other methods, we chose agent-based methods to conduct our study. Moreover, recent agent-based modeling studies for the COVID-19 pandemic show significant promise in assisting decision-makers in managing the crisis by applying policies such as social distancing, disease testing, contact tracing, home isolation, emergency hospitalization, and travel prevention to reduce infection rates. Based on modeling studies conducted in Imperial College, increasing levels of interventions could slow the spread of disease and infection. We ran the model with six different percentages of social distancing while keeping the other parameters constant. The results show that social distancing affects the spread of COVID-19 significantly, in turn decreasing the spread of disease and infection rates when implemented at higher levels. We also validated these results by using the behavior space tool with ten experiments with varying social distancing levels. We conclude that applying and increasing social distancing policy levels leads to a significant reduction in infection spread and the number of deaths. Both experiments show that infection rates are reduced drastically when social distancing intervention is implemented between 80% to 100%.
Building energy consumption prediction has become an important research problem within the context of sustainable homes and smart cities. Data-driven approaches have been regarded as the most suitable for integration into smart houses. With the wide deployment of IoT sensors, the data generated from these sensors can be used for modeling and forecasting energy consumption patterns. Existing studies lag in prediction accuracy and various attributes of buildings are not very well studied. This study follows a data-driven approach in this regard. The novelty of the paper lies in the fact that an ensemble model is proposed, which provides higher performance regarding cooling and heating load prediction. Moreover, the influence of different features on heating and cooling load is investigated. Experiments are performed by considering different features such as glazing area, orientation, height, relative compactness, roof area, surface area, and wall area. Results indicate that relative compactness, surface area, and wall area play a significant role in selecting the appropriate cooling and heating load for a building. The proposed model achieves 0.999 R2 for heating load prediction and 0.997 R2 for cooling load prediction, which is superior to existing state-of-the-art models. The precise prediction of heating and cooling load, can help engineers design energy-efficient buildings, especially in the context of future smart homes.
Online education has emerged as an important educational medium during the COVID-19 pandemic. Despite the advantages of online education, it lacks face-to-face settings, which makes it very difficult to analyze the students’ level of interaction, understanding, and confusion. This study makes use of electroencephalogram (EEG) data for student confusion detection for the massive open online course (MOOC) platform. Existing approaches for confusion detection predominantly focus on model optimization and feature engineering is not very well studied. This study proposes a novel engineering approach that uses probability-based features (PBF) for increasing the efficacy of machine learning models. The PBF approach utilizes the probabilistic output from the random forest (RF) and gradient-boosting machine (GBM) as a feature vector to train machine learning models. Extensive experiments are performed by using the original features and PBF approach through several machine learning models with EEG data. Experimental results suggest that by using the PBF approach on EEG data, a 100% accuracy can be obtained for detecting confused students. K-fold cross-validation and performance comparison with existing approaches further corroborates the results.
With social networking enabling the expressions of billions of people to be posted online, sentiment analysis and massive computational power enables systematic mining of information about populations including their affective states with respect to epidemiological concerns during a pandemic. Gleaning rationale for behavioral choices, such as vaccine hesitancy, from public commentary expressed through social media channels may provide quantifiable and articulated sources of feedback that are useful for rapidly modifying or refining pandemic spread predictions, health protocols, vaccination offerings, and policy approaches. Additional potential gains of sentiment analysis may include lessening of vaccine hesitancy, reduction in civil disobedience, and most importantly, better healthcare outcomes for individuals and their communities. In this article, we highlight the evolution of select epidemiological models; conduct a critical review of models in terms of the level and depth of modeling of social media, social network factors, and sentiment analysis; and finally, partially illustrate sentiment analysis using COVID-19 Twitter data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.