The Leo Pargil dome, northwest India, is a 30 km‐wide, northeast‐trending structure that is cored by gneiss and mantled by amphibolite facies metamorphic rocks that are intruded by a leucogranite injection complex. Oppositely dipping, normal‐sense shear zones that accommodated orogen‐parallel extension within a convergent orogen bound the dome. The broadly distributed Leo Pargil shear zone defines the southwest flank of the dome and separates the dome from the metasedimentary and sedimentary rocks in the hanging wall to the west and south. Thermobarometry and in‐situ U–Th–Pb monazite geochronology were conducted on metamorphic rocks from within the dome and in the hanging wall. These data were combined with U–Th–Pb monazite geochronology of leucogranites from the injection complex to evaluate the relationship between metamorphism, crustal melting, and the onset of exhumation. Rocks within the dome and in the hanging wall contain garnet, kyanite, and staurolite porphyroblasts that record prograde Barrovian metamorphism during crustal thickening that reached ∼530–630 °C and ∼7–8 kbar, ending by c. 30 Ma. Cordierite and sillimanite overgrowths on Barrovian assemblages within the dome record dominantly top‐down‐to‐the‐west shearing during near‐isothermal decompression of the footwall rocks to ∼4 kbar by 23 Ma during an exhumation rate of 1.3 mm year−1. Monazite growth accompanied Barrovian metamorphism and decompression. The leucogranite injection complex within the dome initiated at 23 Ma and continued to 18 Ma. These data show that orogen‐parallel extension in this part of the Himalaya occurred earlier than previously documented (>16 Ma). Contemporaneous onset of near‐isothermal decompression, top‐down‐to‐the‐west shearing, and injection of the decompression‐driven leucogranite complex suggests that early crustal melting may have created a weakened crust that was proceeded by localization of strain and shear zone development. Exhumation along the shear zone accommodated decompression by 23 Ma in a kinematic setting that favoured orogen‐parallel extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.