Accurate measurement of coolant flow rate is essential for determining the maximum power required by the nuclear plant operation and critical for monitoring its operation safety. However, no practical off-the-shelf flowmeter is available to satisfy all the pressing multidimensional operation requirements (i. e., high temperature, high irradiation, and high corrosion). This work thus deals with the development of a new flowmeter for nuclear power plant/reactor process-monitoring and real time analysis; this proposed flowmeter shall be able to continuously conduct robust measurements under extremely harsh environment with high irradiation, high pressure, high temperature and corrosive media. We investigate a transit-time based flow rate measurement which is used in such environment. The transit time of a thermal signal travels along with a liquid flow can be obtained using a cross correlation method. This transit-time-based flowmeter using thermocouples with grounded stainless steel shielding is by far the most robust and reliable solution to measure the flow rate in a harsh environment typically seen in a nuclear reactor. In practice, cross correlation calculation tends to produce flat peak plateau or multiple peaks, leading to a significant error in peak detection. To overcome this problem, in this work, an Auto-Adaptive Impulse Response Function estimation (AAIRF) technique is introduced and a significantly narrower peak is shown theoretically vi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.