Cerebrovascular diseases are among the most widespread diseases in the world, which largely determine the structure of morbidity and mortality rates. Microvascular anastomosis techniques are important for revascularization surgeries on brachiocephalic and carotid arteries and complex cerebral aneurysms and even during resection of brain tumors that obstruct major cerebral arteries. Training in microvascular surgery became even more difficult with less case exposure and growth of the use of endovascular techniques. In this text we will briefly discuss the history of microvascular surgery, review current literature on simulation models with the emphasis on their merits and shortcomings, and describe the views and opinions on the future of the microvascular training in neurosurgery. In “dry” microsurgical training, various models created from artificial materials that simulate biological tissues are used. The next stage in training more experienced surgeons is to work with nonliving tissue models. Microvascular training using live models is considered to be the most relevant due to presence of the blood flow. Training on laboratory animals has high indicators of face and constructive validity. One of the future directions in the development of microsurgical techniques is the use of robotic systems. Robotic systems may play a role in teaching future generations of microsurgeons. Modern technologies allow access to highly accurate learning environments that are extremely similar to real environment. Additionally, assessment of microsurgical skills should become a fundamental part of the current evaluation of competence within a microneurosurgical training program. Such an assessment tool could be utilized to ensure a constant level of surgical competence within the recertification process. It is important that this evaluation be based on validated models.
Stereotactic brain needle biopsies are indicated for deep-seated or multiple brain lesions and for patients with poor prognosis in whom the risks of resection outweigh the potential outcome benefits. The main goal of such procedures is not to improve the resection extent but to safely acquire viable tissue representative of the lesion for further comprehensive histological, immunohistochemical, and molecular analyses. Herein, we review advanced optical techniques for improvement of safety and efficacy of stereotactic needle biopsy procedures. These technologies are aimed at three main areas of improvement: (1) avoidance of vessel injury, (2) guidance for biopsy acquisition of the viable diagnostic tissue, and (3) methods for rapid intraoperative assessment of stereotactic biopsy specimens. The recent technological developments in stereotactic biopsy probe design include the incorporation of fluorescence imaging, spectroscopy, and label-free imaging techniques. The future advancements of stereotactic biopsy procedures in neuro-oncology include the incorporation of optical probes for real-time vessel detection along and around the biopsy needle trajectory and in vivo confirmation of the diagnostic tumor tissue prior to sample acquisition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.