A new super resolution imaging technique which potentially enables sub-µm spatial resolution, using a detector of pixels much larger than the spatial resolution, is proposed. The method utilizes sample scanning through a large number of identical X-ray microprobes periodically spaced (the period corresponds to a multiple of the pixel size), which reduces drastically the scanning time. The information about the sample illuminated by the microprobes is stored by large detector pixels. Using these data and sample position information, a super-resolution image reconstruction is performed. With a one-dimensional (1D) high aspect ratio nickel single lens array designed for theoretically expected sub-µm microprobes at 17 keV and fabricated by deep X-ray lithography and electroforming technique, 2 µm X-ray microprobes with a period of 10 µm were achieved. We performed a first experiment at KARA synchrotron facility, and it was demonstrated that the smallest structure of a test pattern with a size of 1.5 µm could be easily resolved by using images generated from a detector having a pixel size of 10.4 µm. This new approach has a great potential for providing a new microscopic imaging modality with a large field of view and short scan time.
A two-dimensional array of compound refractive lenses (2D array of CRLs) designed for hard X-ray imaging with a 3.5 mm2 large field of view is presented. The array of CRLs consists of 2D polymer biconcave parabolic 34 × 34 multi-lenses fabricated via deep X-ray lithography. The developed refractive multi-lens array was applied for sub-pixel resolution scanning transmission X–ray microscopy; a raster scan with only 55 × 55 steps provides a 3.5 megapixel image. The optical element was experimentally characterized at the Diamond Light Source at 34 keV. An array of point foci with a 55 µm period and an average size of ca. 2.1 µm × 3.6 µm was achieved. In comparison with the conventional scanning transmission microscopy using one CRL, sub-pixel resolution scanning transmission hard X-ray microscopy enables a large field of view and short scanning time while keeping the high spatial resolution.
Owing to the development of X-ray focusing optics during the past decades, synchrotron-based X-ray microscopy techniques allow the study of specimens with unprecedented spatial resolution, down to 10 nm, using soft and medium X-ray photon energies, though at the expense of the field of view (FOV). One of the approaches to increase the FOV to square millimetres is raster-scanning of the specimen using a single nanoprobe; however, this results in a long data acquisition time. This work employs an array of inclined biconcave parabolic refractive multi-lenses (RMLs), fabricated by deep X-ray lithography and electroplating to generate a large number of long X-ray foci. Since the FOV is limited by the pattern height if a single RML is used by impinging X-rays parallel to the substrate, many RMLs at regular intervals in the orthogonal direction were fabricated by tilted exposure. By inclining the substrate correspondingly to the tilted exposure, 378000 X-ray line foci were generated with a length in the centimetre range and constant intervals in the sub-micrometre range. The capability of this new X-ray focusing device was first confirmed using ray-tracing simulations and then using synchrotron radiation at BL20B2 of SPring-8, Japan. Taking account of the fact that the refractive lens is effective for focusing high-energy X-rays, the experiment was performed with 35 keV X-rays. Next, by scanning a specimen through the line foci, this device was used to perform large FOV pixel super-resolution scanning transmission hard X-ray microscopy (PSR-STHXM) with a 780 ± 40 nm spatial resolution within an FOV of 1.64 cm × 1.64 cm (limited by the detector area) and a total scanning time of 4 min. Biomedical implant abutments fabricated via selective laser melting using Ti–6Al–4V medical alloy were measured by PSR-STHXM, suggesting its unique potential for studying extended and thick specimens. Although the super-resolution function was realized in one dimension in this study, it can be expanded to two dimensions by aligning a pair of presented devices orthogonally.
With the availability of more powerful computing processors, iterative reconstruction algorithms have recently been successfully implemented as an approach to achieving significant dose reduction in X-ray CT. In this report, we descrive our recent work on developing an adaptive iterative reconstruction algorithm for X-ray CT, that is shown to provide results comparable to those obtained by proprietary algorithms, both in terms of reconstruction accuracy and execution time. The described algorithm is thus provided for free to the scientific community, for regular use, and for possible further optimization.
It is necessary to test the weld thickness of turbine, as it is one of the most important parts for aircraft engine. The weld thickness of turbine for aircraft engine by high-energy X-ray tomography was determined. We used an X-ray tube and a betatron as X-ray sources. The wall thickness of two tubes and weld thickness of turbine were measured. It is shown that the high-energy X-ray tomography system is determined the wall thickness of the tube and the weld thickness of turbine with high accuracy. We also studied the method to reduce scattered radiation. All experiments were carried out in the non-destructive testing (NDT) Institute of Tomsk Polytechnic University (TPU).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.