The deleterious potential to generate oxidative stress and damage is a fundamental challenge to metabolism. The oxidative stress response transcription factor, SKN-1/NRF2, can sense and respond to changes in metabolic state, although the mechanism and physiological consequences of this remain unknown. To explore this connection, we performed a genetic screen in C. elegans targeting amino acid catabolism and identified multiple metabolic pathways as regulators of SKN-1 activity. We found that genetic perturbation of the conserved amidohydrolase T12A2.1/amdh-1 activates a unique subset of SKN-1 regulated detoxification genes. Interestingly, this transcriptional program is independent of canonical P38-MAPK signaling components but requires the GATA transcription factor ELT-3, nuclear hormone receptor NHR-49, and mediator complex subunit MDT-15. This activation of SKN-1 is dependent on upstream histidine catabolism genes HALY-1 and Y51H4A.7/UROC-1 and may occur through accumulation of a catabolite, 4-imidazolone-5-propanoate (IP). Triggering SKN-1 activation results in a physiological trade off of increased oxidative stress resistance but decreased survival to heat stress. Together, our data suggest that SKN-1 is a key surveillance factor which senses and responds to metabolic perturbations to influence physiology and stress resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.