Many extensions and variants of the so-called Apostol-type polynomials have recently been investigated. Motivated mainly by those works and their usefulness, we aim to introduce a new class of Apostol-type Laguerre-Genocchi polynomials associated with the modified Milne-Thomson's polynomials introduced by Derre and Simsek and investigate its properties, including, for example, various implicit formulas and symmetric identities in a systematic manner. The new family of polynomials introduced here, being very general, contains, as its special cases, many known polynomials. So the properties and identities presented here reduce to yield those results of the corresponding known polynomials.
Abstract. In this paper, we introduce a unified family of Laguerre-based Apostol Bernoulli, Euler and Genocchi polynomials and derive some implicit summation formulae and general symmetry identities arising from different analytical means and applying generating functions. The result extend some known summations and identities of generalized Bernoulli, Euler and Genocchi numbers and polynomials.
Motivated by their importance and potential for applications in certain problems in number theory, combinatorics, classical and numerical analysis, and other fields of applied mathematics, a variety of polynomials and numbers with their variants and extensions have recently been introduced and investigated. In this paper, we aim to introduce generalized Laguerre-Bernoulli polynomials and investigate some of their properties such as explicit summation formulas, addition formulas, implicit formulas, and symmetry identities. Relevant connections of the results presented here with those relatively simple numbers and polynomials are considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.