In recent years, driver’s temporary state has been one in each of the foremost causes of road accidents and would possibly lead to severe physical damaging, mortality and necessary and noticeable economic losses. Maximum road accidents possible to avoided, if possible, to properly monitored driver’s drowsiness and a system are given warnings. In this work, a simple and inexpensive method has been offered to detect driver’s drowsiness or sleep onset detection with single channel EEG signal analysis. The key novelty of this work is to identify the sleep onset detection from a publicly available graph signal dataset by exploitation only one feature, simply implementable filter in any microcontroller device or smartphone and a threshold based mostly classification. Since, threshold-based classification techniques don’t need to train the classifier, hence, new subject adaptation is comparatively easier and real time implementation is more feasible. This novel approach can be easily implemented in smartphone to design and expand a drowsiness detection and alarming system for vehicle’s driver. On a variety of subjects, the experimental results show 95.68% accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.