Efficient antitumor immune response requires the coordinated function of integrated immune components, but is finally exerted by the differentiated effector tumor-infiltrating lymphocytes (TIL). TIL cells comprise, therefore, an exciting platform for adoptive cell transfer (ACT) in cancer. In this study, we show that the inhibitory carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) protein is found on virtually all human TIL cells following preparation protocols of ACT treatment for melanoma. We further demonstrate that the CEACAM1 homophilic interactions inhibit the TIL effector functions, such as specific killing and IFN-γ release. These results suggest that CEACAM1 may impair in vivo the antitumor response of the differentiated TIL. Importantly, CEACAM1 is commonly expressed by melanoma and its presence is associated with poor prognosis. Remarkably, the prolonged coincubation of reactive TIL cells with their melanoma targets results in increased functional CEACAM1 expression by the surviving tumor cells. This mechanism might be used by melanoma cells in vivo to evade ongoing destruction by tumor-reactive lymphocytes. Finally, CEACAM1-mediated inhibition may hinder in many cases the efficacy of TIL ACT treatment of melanoma. We show that the intensity of CEACAM1 expression on TIL cells constantly increases during ex vivo expansion. The implications of CEACAM1-mediated inhibition of TIL cells on the optimization of current ACT protocols and on the development of future immunotherapeutic modalities are discussed.
The insulin-like growth factor-1 receptor (IGF1R) emerged in recent years as a promising therapeutic target in oncology. Identification of potential biomarkers capable of predicting response to IGF1R-targeted therapy is of cardinal importance. Tumor suppressor BRCA1 has important roles in multiple pathways, including gene transcription, DNA damage repair, and control of apoptosis. Early studies have identified the IGF1R gene as a downstream target for inhibitory regulation by wild-type, but not mutant, BRCA1. The aim of the present study was to evaluate the hypothesis that the mutational status of BRCA1 may influence the ability of IGF1R-directed therapies to efficiently inhibit the IGF1R axis. Using breast cancer-derived cell lines expressing a wild-type or a mutant BRCA1, we demonstrate that the capacity of MK-0646, a monoclonal antibody antagonist to the human IGF1R, to inhibit insulin-like growth factor-1-stimulated IGF1R and downstream mediators’ phosphorylation was impaired in mutant BRCA1-expressing cell lines. In addition, the antibody was able to reduce proliferation of wild-type BRCA1-expressing cells but had a reduced inhibitory effect in mutant BRCA1-expressing cells. In summary, our data indicate that the mutational status of BRCA1 must be taken into account when selecting patients for IGF1R targeting protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.