Background:
Recent evidence suggests that cancer and cardiovascular diseases are associated. Chemotherapy drugs are known to result in cardiotoxicity, and studies have shown that heart failure and stress correlate with poor cancer prognosis. However, whether cardiac remodeling in the absence of heart failure is sufficient to promote cancer is unknown.
Methods:
To investigate the effect of early cardiac remodeling on tumor growth and metastasis colonization, we used transverse aortic constriction (TAC), a model for pressure overload–induced cardiac hypertrophy, and followed it by cancer cell implantation.
Results:
TAC-operated mice developed larger primary tumors with a higher proliferation rate and displayed more metastatic lesions compared with controls. Serum derived from TAC-operated mice potentiated cancer cell proliferation in vitro, suggesting the existence of secreted tumor-promoting factors. Using RNA-sequencing data, we identified elevated mRNA levels of periostin in the hearts of TAC-operated mice. Periostin levels were also found to be high in the serum after TAC. Depletion of periostin from the serum abrogated the proliferation of cancer cells; conversely, the addition of periostin enhanced cancer cell proliferation in vitro. This is the first study to show that early cardiac remodeling nurtures tumor growth and metastasis and therefore promotes cancer progression.
Conclusions:
Our study highlights the importance of early diagnosis and treatment of cardiac remodeling because it may attenuate cancer progression and improve cancer outcome.
c-Jun dimerization protein (JDP2) and Activating Transcription Factor 3 (ATF3) are closely related basic leucine zipper proteins. Transgenic mice with cardiac expression of either JDP2 or ATF3 showed maladaptive remodeling and cardiac dysfunction. Surprisingly, JDP2 knockout (KO) did not protect the heart following transverse aortic constriction (TAC). Instead, the JDP2 KO mice performed worse than their wild type (WT) counterparts. To test whether the maladaptive cardiac remodeling observed in the JDP2 KO mice is due to ATF3, ATF3 was removed in the context of JDP2 deficiency, referred as double KO mice (dKO). Mice were challenged by TAC, and followed by detailed physiological, pathological and molecular analyses. dKO mice displayed no apparent differences from WT mice under unstressed condition, except a moderate better performance in dKO male mice. Importantly, following TAC the dKO hearts showed low fibrosis levels, reduced inflammatory and hypertrophic gene expression and a significantly preserved cardiac function as compared with their WT counterparts in both genders. Consistent with these data, removing ATF3 resumed p38 activation in the JDP2 KO mice which correlates with the beneficial cardiac function.
Collectively, mice with JDP2 and ATF3 double deficiency had reduced maladaptive cardiac remodeling and lower hypertrophy following TAC. As such, the worsening of the cardiac outcome found in the JDP2 KO mice is due to the elevated ATF3 expression. Simultaneous suppression of both ATF3 and JDP2 activity is highly beneficial for cardiac function in health and disease.
Physiological or pathological muscle disuse/inactivity or loss of the neural‐muscular junction cause muscle atrophy. Atrophy‐inducing conditions cause metabolic oxidative stress in the muscle tissue, activation of the ubiquitin‐proteasome and of the autophagosome‐lysosome systems, enhanced removal of the damaged proteins and organelles, and loss of muscle mass and strength. The signaling pathways that control these catabolic processes are only partially known. In this study, we systematically analyzed the role of p38α mitogen‐activated protein kinase (MAPK) in denervation‐mediated atrophy. Mice with attenuated activity of p38α (p38AF) are partially protected from muscle damage and atrophy. Denervated (Den) muscles of these mutant mice exhibit reduced signs of oxidative stress, decreased unfolded protein response and lower levels of ubiquitinated proteins relative to Den muscles of control mice. Further, whereas autopahagy flux is inhibited in Den muscles of control mice, Den muscles of p38AF mice maintain normal level of autophagy flux. Last, muscle denervation affects differently the energy metabolism of muscles in normal and mutant mice; whereas denervation appears to increase mitochondrial oxidative metabolism in control mice, it elevates anaerobic glycolytic metabolism in p38AF mice. Our results indicate, therefore, that attenuation of p38α activity in mice protects Den muscles by reducing oxidative stress, lowering protein damage and improving the clearance of damaged mitochondria by autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.